scholarly journals Application of Adaptive Tuned Magneto-Rheological Elastomer for Vibration Reduction of a Plate by a Variable-Unbalance Excitation

2020 ◽  
Vol 10 (11) ◽  
pp. 3934 ◽  
Author(s):  
Un-Chang Jeong

The present study on vibration reduction in systems wherein the excitation frequency is variable designed and fabricated a magnetorheological elastomer (MRE)-based tunable dynamic vibration absorber and evaluated its performance in an experimental manner. The design of an MRE-based adaptive tuned dynamic vibration absorber (ATDVA) involves designing two parts: stiffness and mass. Before designing the MRE-based ATDVA, this study determined the resonance frequency of a target object for vibration reduction. For the design of the ATDVA’s stiffness part, the thickness of specimens was determined by measuring the rate of variation of the MRE’s shear modulus with respect to the MRE’s thickness. The design of the mass part was optimized using sensitivity analysis and genetic algorithms after the derivation of formulas for its magnetic field and mass. Further, upon the application of an electric current to the MRE, its stiffness was measured so that the stiffness of the designed MRE-based ATDVA could be tuned accordingly. Finally, the vibration-reducing performance of the MRE-based ATDVA was evaluated to determine the applicability of the vibration absorber under the condition of variable-frequency excitation.

Author(s):  
Toshihiko Komatsuzaki ◽  
Yoshio Iwata ◽  
Hirofumi Ringe ◽  
Keiji Kawagoshi

A passive type dynamic vibration absorber offers advantages in reliability and simple constitution, however, the use of the absorber with fixed property is usually limited to harmonically excited case, where the damper is only effective for pre-determined narrow frequency range. Design of the damper following well-known optimal tuning theory could extend the effective frequency range, yet the damping performance remains at a certain amount. In this paper, the stiffness controllable elastomer composite known as Magnetorheological elastomer (MRE) is applied to the dynamic absorber whose natural frequency is tunable by the external magnetic field. MREs are first fabricated and their field-dependent properties are investigated. The MRE is then applied to a dynamic absorber along with stiffness switching scheme so that the vibration of 1-DOF structure is damped more effectively. Investigations show that the vibration of the structure can be fully reduced by the proposed dynamic absorber with variable stiffness functionality.


2020 ◽  
Vol 12 (11) ◽  
pp. 168781402096159
Author(s):  
Weizhi Song ◽  
Zhien Liu ◽  
Chihua Lu ◽  
Yongchao Li ◽  
Bin Li

The absorbing effect of traditional dynamic vibration absorber (TDVA) is satisfactory only when the natural frequency is close to the excitation frequency. For this defect, a semi-active vibration absorber is designed with magnetorheological elastomer (MRE) as a stiffness element, that its stiffness can be controlled by magnetic field, to widen the frequency band of the absorber. Theory and experiments show that reducing the damp of the absorber can improve the performance of the absorber at the anti-resonance point, but it will cause the vibration of the controlled system at the new resonance point, which caused by the addition of a DVA, to be more intense. For this problem, the compatibilizer: silane coupling agent KH570, is added to the preparation of MRE to reduce material damping, at the same time, the stiffness control strategy is used to eliminate the resonance of the controlled system caused by the addition of DVA. The final experimental results show that the frequency band of vibration reduction has been broadened effectively and the vibration reduction performance has been improved considerably. Moreover, the resonance has been eliminated very well.


Author(s):  
Yongguo Zhang ◽  
Chuanbo Ren ◽  
Kehui Ma ◽  
Zhen Xu ◽  
Pengcheng Zhou ◽  
...  

The combination of dynamic vibration absorber and partial state feedback with time-delay is called delayed resonator. In order to suppress the seat vibration caused by uneven road surface and improve ride comfort, the delayed resonator is applied to the seat suspension to realize active control of the seat suspension system. The dynamic model of the half-vehicle suspension system is established, and the time-delay differential equation of the system under external excitation is solved by the precise integration method. The root mean square of the time-domain vibration response of seat displacement, seat acceleration and vehicle acceleration are selected as the objective function. Then, the optimal time-delay control parameters are obtained by particle swarm optimization algorithm. The frequency sweeping method is used to obtain the critical time-delay value and time-delay stable interval of the system. Finally, an active seat suspension model with delayed resonator is established for numerical simulation. The results show that the delayed resonator can greatly suppress the seat vibration response regardless of the road simple harmonic excitation or random excitation. Compared with dynamic vibration absorber, it has a better vibration absorption effect and a wider vibration reduction frequency band.


Sign in / Sign up

Export Citation Format

Share Document