Volume 1: Development and Characterization of Multifunctional Materials; Modeling, Simulation and Control of Adaptive Systems; Integrated System Design and Implementation
Latest Publications


TOTAL DOCUMENTS

96
(FIVE YEARS 0)

H-INDEX

6
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791856031

Author(s):  
Moritz Hübler ◽  
Sebastian Nissle ◽  
Martin Gurka ◽  
Sebastian Schmeer ◽  
Ulf Paul Breuer

In this paper two innovative concepts for adjustable energy absorbing elements are presented. These absorbers can serve as an essential element in a smart crash management system e.g. for automotive applications. The adaptability is based on the basic idea of adjusting the stiffness of the absorber in relation to the actual load level in a crash event. Therefore the whole length of the absorber element can be used for energy dissipation. The adjustable absorbers are made from fiber reinforced plastics and shape memory alloy wires as actuating elements. Two possibilities for the basic design of the absorber elements are shown, the performance of the actuating SMA elements is characterized in detail and the switching behavior of the whole elements, between a stiff “on” state and a flexible “off” state, is measured.


Author(s):  
Laura Tolliver ◽  
Xiaoning Jiang ◽  
Tian-Bing Xu

Electromechanical actuators that generate large displacements, have large load capabilities, and demonstrate strong resonance characteristics are in great demand in the areas of precision positioning, active vibration control, and energy harvesting. Piezoelectric materials have been widely investigated for these applications because of their high energy density, quick response time, and relatively low driving voltages, but they demonstrate very small strain, typically about 0.1%. We present experimental and finite element results for two designs that use active and passive frames, respectively, to enhance the small strain in piezoelectric multilayer stacks. The first design, stacked-HYBATS, employs the synergetic contribution of d33 and d31 mode piezoelectric material. Finite element results show that this structure can generate over 50 microns of displacement and nearly 40 N of blocking force in a 36 mm × 22 mm × 10 mm footprint. The second design employs frames made from passive materials to form two stages of strain amplification in a 42 mm × 30 mm × 20 mm footprint. This two-stage design can produce over 600 microns of displacement and has a blocking force of 27 N. The active and passive materials of both designs can be varied to maximize displacement and/or blocking force. The stacked-HYBATS and the two-stage amplification system display favorable force-displacement capabilities and are promising for a variety of manufacturing and space technology applications.


Author(s):  
F. Tateo ◽  
M. Collet ◽  
M. Ouisse ◽  
M. N. Ichchou ◽  
K. A. Cunefare

In the last few decades, researchers have given a lot of attention to new engineered materials with the purpose of developing new technologies and devices such as mechanical filters, low frequency sound and vibration isolators, and acoustic waveguides. For instance, elastic phononic crystals may come to mind. They are materials with elastic or fluid inclusions inside a matrix made of an elastic solid. The anomalous behavior in phononic crystals arises from interference of waves propagating within an inhomogeneous material. The inclusions inside the matrix cause strong modifications of scattering properties. However, the application of phononic crystals is still limited to sonic frequencies. In fact, band gaps can be generated only when the acoustic wavelength is comparable to the distance between the inclusion. In order to overcome this limitation, a new class of metamaterial has been proposed: meta composite. This new class of material can modify the dynamics of the underlying structure using a bidimensional array of electromechanical transducers, which are composed by piezo patches connected to a synthetic negative capacitance. In this study, an application of the Floquet-Bloch theorem for vibroacoustic power flow optimization will be presented. In the context of periodically distributed, damped 2D mechanical systems, this numerical approach allows one to compute the multimodal waves dispersion curves into the entire first Brillouin zone. This approach also permits optimization of the piezoelectric shunting electrical impedance, which controls energy diffusion into the proposed semiactive distributed set of cells. Experiments performed on the examined structure illustrates the effectiveness of the proposed control method. The experiment requires a rectangular metallic plate equipped with seventyfive piezopatches, controlled independently by electronic circuits. More specifically, the out-of-plane displacements and the averaged kinetic energy of the controlled plate are compared in two different cases (control system on/off). The resulting data clearly show how this proposed technique is able to dampen and selectively reflect the incident waves.


Author(s):  
Alexander Czechowicz ◽  
Peter Dültgen ◽  
Sven Langbein

Shape memory alloys (SMA) are smart materials, which have two technical usable effects: While pseudoplastic SMA have the ability to change into a previously imprinted actual shape through the means of thermal activation, pseudoelastic SMA show a reversible mechanical elongation up to 8% at constant temperature. The transformation between the two possible material phases (austenite and martensite) shows a hysteretic behavior. As a result of these properties, SMA can be used as elastic elements with intrinsic damping function. Additionally the electrical resistance changes remarkably during the material deformation. These effects are presented in the publication in combination with potential for applications in different branches at varying boundary conditions. The focus of the presented research is concentrated on the application of elastic elements with adaptive damping function. As a proof for the potential considerations, an application example sums up this presentation.


Author(s):  
Sven Langbein ◽  
Alexander Czechowicz

Shape memory alloys (SMA) are thermally activated smart materials. Due to their ability to change into a previously imprinted actual shape through the means of thermal activation, they are suitable as actuators for mechatronical systems. Despite of the advantages shape memory alloy actuators provide, these elements are only seldom integrated by engineers into mechatronical systems. Reasons are the complex characteristics, especially at different boundary conditions and the missing simulation- and design tools. Also the lack of knowledge and empirical data are a reason why development projects with shape memory actuators often lead to failures. Therefore, a need of developing methods, standardized testing of empirical properties and computer aided simulation tools is motivated. While computer-aided approaches have been discussed in further papers, as well as standardization potentials of SMA actuators, this paper focuses on a developing method for SMA actuators. The main part of the publication presents the logical steps which have to be passed, in order to develop an SMA actuator, considering several options like mechanical, thermal, and electrical options. As a result of the research work, the paper proves this method by one example in the field of SMA-valve technology.


Author(s):  
Marvin Schmidt ◽  
Andreas Schütze ◽  
Stefan Seelecke

Energy saving and environmental protection are topics of growing interest. In the light of these aspects alternative refrigeration principles become increasingly important. Shape memory alloys (SMA), especially NiTi alloys, generate a large amount of latent heat during solid state phase transformations, which can lead to a significant cooling effect in the material. These materials do not only provide the potential for an energy-efficient cooling process, they also minimize the impact on the environment by reducing the need for conventional ozone-depleting refrigerants. Our paper, presenting first results obtained in a project within the DFG Priority Program SPP 1599 “Ferroic Cooling”, focuses on the thermodynamic analysis of a NiTi-based cooling system. We first introduce a suitable cooling process and subsequently illustrate the underlying mechanisms of the process in comparison with the conventional compression refrigeration system. We further introduce a graphical solution to calculate the energy efficiency ratio of the system. This thermodynamic analysis method shows the necessary work input and the heat absorption of the SMA in stress/strain- or temperature/entropy-diagrams, respectively. The results of the calculations underline the high potential of this solid-state cooling methodology.


Author(s):  
Yancheng Li ◽  
Jianchun Li

This paper presents a recent research breakthrough on the development of a novel adaptive seismic isolation system as the quest for seismic protection for civil structures, utilizing the field-dependent property of the magnetorheological elastomer (MRE). A highly-adjustable MRE base isolator was developed as the key element to form smart seismic isolation system. The novel isolator contains unique laminated structure of steel and MRE layers, which enable its large-scale civil engineering applications, and a solenoid to provide sufficient and uniform magnetic field for energizing the field-dependent property of MR elastomers. With the controllable shear modulus/damping of the MR elastomer, the developed adaptive base isolator possesses a controllable lateral stiffness while maintaining adequate vertical loading capacity. Experimental results show that the prototypical MRE base isolator provides amazing increase of lateral stiffness up to 1630%. Such range of increase of the controllable stiffness of the base isolator makes it highly practical for developing new adaptive base isolation system utilizing either semi-active or smart passive controls. To facilitate the structural control development using the adaptive MRE base isolator, an analytical model was developed to stimulate its behaviors. Comparison between the analytical model and experimental data proves the effectiveness of such model in reproducing the behavior of MRE base isolator, including the observed strain stiffening effect.


Author(s):  
Young-Tai Choi ◽  
Norman M. Wereley ◽  
Gregory J. Hiemenz

Novel semi-active vibration controllers are developed in this study for magnetorheological (MR) fluid-based vibration control systems, including: (1) a band-pass frequency shaped semi-active control algorithm, (2) a narrow-band frequency shaped semi-active control algorithm. These semi-active vibration control algorithms designed without resorting to the implementation of an active vibration control algorithms upon which is superposed the energy dissipation constraint. These new Frequency Shaped Semi-active Control (FSSC) algorithms require neither an accurate damper (or actuator) model, nor system identification of damper model parameters for determining control current input. In the design procedure for the FSSC algorithms, the semi-active MR damper is not treated as an active force producing actuator, but rather is treated in the design process as a semi-active dissipative device. The control signal from the FSSC algorithms is a control current, and not a control force as is typically done for active controllers. In this study, two FSSC algorithms are formulated and performance of each is assessed via simulation. Performance of the FSSC vibration controllers is evaluated using a single-degree-of-freedom (DOF) MR fluid-based engine mount system. To better understand the control characteristics and advantages of the two FSSC algorithms, the vibration mitigation performance of a semi-active skyhook control algorithm, which is the classical semi-active controller used in base excitation problems, is compared to the two FSSC algorithms.


Author(s):  
Dirk Güth ◽  
Markus Schamoni ◽  
Jürgen Maas

The viscous losses at high rotational speeds in idle mode represent a major drawback for an energy-efficient operation of MRF brakes and clutches. In this paper, an innovative concept is presented that allows a complete torque-free idle mode of the mentioned actuators by the use of a MR-fluid control. Using magnetic forces, the MR-fluid control is capable to increase the efficiency and lifetime of MRF based actuators for torque transmission. An approach of designing actuators using the investigated MR-fluid control is applied which considers in detail the required magnetic excitation systems for enabling a MRF movement in the shear gaps. A clutch is presented and simulations of the transient switching behavior are performed. Measurements of a realized clutch underline the functionality and efficiency of those actuators. Additionally, further approaches for a shear gap design are introduced that increase the maximum torque capacity. By the use of a micro-grooved structure for the MR-fluid control, a torque-to-volume ratio can be achieved that is in the order of typical MRF actuators for torque-transmission with completely filled shear gaps.


Author(s):  
Stanislaw Flaga ◽  
Andrzej Sioma

In the course of work on a linear actuator based on a magnetic shape memory alloy (MSMA), a research workstation was constructed enabling the examination of pneumatic valves featuring an electromechanical transducer created with MSMA technology. In this article, the general construction of the research workstation is presented, together with an initial study of a demonstrator of a pneumatic, one-stage, one-way throttle valve. In the presented demonstrator, a simple replacement of a electromechanical transducer into a transducer created with MSMA technology was performed. In addition, the study also describes the problems appearing in such structures along with potential troubleshooting methods.


Sign in / Sign up

Export Citation Format

Share Document