scholarly journals Study on Self-Parallel GaN-Based Terahertz Hetero-Structural Gunn Diode

2020 ◽  
Vol 10 (17) ◽  
pp. 5777
Author(s):  
Ying Wang ◽  
Liu-An Li ◽  
Lin-An Yang ◽  
Jin-Ping Ao ◽  
Yue Hao

In this paper, we propose a novel gallium nitride-based multi-two-dimensional-electron-gas (2DEG)-channel self-parallel Gunn diode (SPD) for the first time. In the SPD, a trench anode is etched through at least the bottommost 2DEG channels, which splits all 2DEG channels into two shorter channels with lengths of L1 and L2. Therefore, one SPD is just equal to several shorter diodes in parallel; as a result, we call it a self-parallel Gunn diode. In the symmetrical SPD, the component of fundamental frequency is nearly multiplied as compared with the regular Gunn diode. In the asymmetrical SPD (L2 = nL1, n is a positive integer), the harmonic components are greatly enhanced, specially the nth harmonic. Our work demonstrates that the GaN-based terahertz SPD not only offers an easy transfer between two different frequencies, but also realizes the simultaneous enhancement of oscillation power and frequency.

2021 ◽  
Vol 104 (4) ◽  
Author(s):  
Jine Zhang ◽  
Hui Zhang ◽  
Xiaobing Chen ◽  
Jing Zhang ◽  
Shaojin Qi ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Orion Ciftja

AbstractWe consider the stability of the circular Fermi surface of a two-dimensional electron gas system against an elliptical deformation induced by an anisotropic Coulomb interaction potential. We use the jellium approximation for the neutralizing background and treat the electrons as fully spin-polarized (spinless) particles with a constant isotropic (effective) mass. The anisotropic Coulomb interaction potential considered in this work is inspired from studies of two-dimensional electron gas systems in the quantum Hall regime. We use a Hartree–Fock procedure to obtain analytical results for two special Fermi liquid quantum electronic phases. The first one corresponds to a system with circular Fermi surface while the second one corresponds to a liquid anisotropic phase with a specific elliptical deformation of the Fermi surface that gives rise to the lowest possible potential energy of the system. The results obtained suggest that, for the most general situations, neither of these two Fermi liquid phases represent the lowest energy state of the system within the framework of the family of states considered in this work. The lowest energy phase is one with an optimal elliptical deformation whose specific value is determined by a complex interplay of many factors including the density of the system.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Berthold Jäck ◽  
Fabian Zinser ◽  
Elio J. König ◽  
Sune N. P. Wissing ◽  
Anke B. Schmidt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document