scholarly journals Modeling Short-Term Landscape Modification and Sedimentary Budget Induced by Dam Removal: Insights from LEM Application

2020 ◽  
Vol 10 (21) ◽  
pp. 7697
Author(s):  
Dario Gioia ◽  
Marcello Schiattarella

Simulation scenarios of sediment flux variation and topographic changes due to dam removal have been investigated in a reservoir catchment of the axial zone of southern Italy through the application of a landscape evolution model (i.e.,: the Caesar–Lisflood landscape evolution models, LEM). LEM simulation highlights that the abrupt change in base level due to dam removal induces a significant increase in erosion ability of main channels and a strong incision of the reservoir infill. Analysis of the sediment dynamics resulting from the dam removal highlights a significant increase of the total eroded volumes in the post dam scenario of a factor higher than 4. Model results also predict a strong modification of the longitudinal profile of main channels, which promoted fluvial incision upstream and downstream of the former reservoir area. Such a geomorphic response is in agreement with previous analysis of the fluvial system short-term response induced by base-level lowering, thus demonstrating the reliability of LEM-based analysis for solving open problems in applied geomorphology such as perturbations and short-term landscape modification natural processes or human impact.

Water ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 911 ◽  
Author(s):  
Gioia ◽  
Lazzari

Landscape evolution models (LEMs) represent one of the most promising approaches to evaluate sedimentary budget, although factors such as the high number of parameters or the difficulty evaluating the robustness of the results can represent a limitation in their application in natural landscapes. In this paper, the Caesar–Lisflood LEM has been applied in a small catchment (i.e., about 9 km2) of southern Italy draining an artificial reservoir in order to test its ability to predict sediment flux and erosion rate. Short-term (i.e., about 20 years) estimation of the sediment volumes accumulated in the reservoir has been reconstructed by a bathymetric survey and compared to the results coming from the coeval LEM simulations. Results indicate a good accordance between LEM-based erosion volume estimations and direct sedimentation assessment, thus testifying to the high potential of such models to solve issues of sedimentary budget and short-term landscape modification.


2013 ◽  
Vol 339 ◽  
pp. 728-731 ◽  
Author(s):  
Cun Lei Li ◽  
Lei Qin ◽  
Xue Li ◽  
Xi Long Zhang

With the instruction of the high resolution sequence stratigraphy and sedimentology theory, and the comprehensive application of 11 wells core, more than 800 mud logging and log data, high resolution sequence stratigraphic characteristics research in the XII Group of the Member III of Qing Shankou Formation in the Qianan oilfield has been finished. The results show that the study area can be divided into one middle-term base level cycle and five short-term base level cycles. The only sequence structure of middle term cycle is (B type) and the short term cycle mainly consists of B types meanwhile there are small mounts of upward deepening structures (A type) and symmetric structures (C type). Based on the classification of base-level cycles, fine stratigraphic correlation is conducted by using isochronous cycle correlations. In addition, 15 high resolution sequence stratigraphic frameworks are established which unify the study area and provide the solid geological basis for the sandstone distribution, the identification of mainly oil-bearing sand bodies and potential oil reservoirs.


2020 ◽  
Author(s):  
Jessica R. Stanley ◽  
Jean Braun ◽  
Guillaume Baby ◽  
François Guillocheau ◽  
Cecile Robin ◽  
...  

2020 ◽  
Vol 25 (6) ◽  
pp. 04020022
Author(s):  
Yuan-Heng Wang ◽  
Chia-Chu Chu ◽  
Gene Jiing-Yun You ◽  
Hoshin V. Gupta ◽  
Peng-Hao Chiu

2011 ◽  
Vol 75 (2) ◽  
pp. 378-384 ◽  
Author(s):  
Ivar Berthling ◽  
Bernd Etzelmüller

AbstractRecent accounts suggest that periglacial processes are unimportant for large-scale landscape evolution and that true large-scale periglacial landscapes are rare or non-existent. The lack of a large-scale topographical fingerprint due to periglacial processes may be considered of little relevance, as linear process–landscape development relationships rarely can be substantiated. Instead, periglacial landscapes may be classified in terms of specific landform associations. We propose “cryo-conditioning”, defined as the interaction of cryotic surface and subsurface thermal regimes and geomorphic processes, as an overarching concept linking landform and landscape evolution in cold regions. By focusing on the controls on processes, this concept circumvents scaling problems in interpreting long-term landscape evolution derived from short-term processes. It also contributes to an unambiguous conceptualization of periglacial geomorphology. We propose that the development of several key elements in the Norwegian geomorphic landscape can be explained in terms of cryo-conditioning.


2020 ◽  
Author(s):  
Valeria Zavala ◽  
Sebastien Carretier ◽  
Vincent Regard ◽  
Stephane Bonnet ◽  
Rodrigo Riquelme ◽  
...  

<p>The downstream increase in valley width is an important feature of fluvial landscapes that may be evident to anyone: even if local exceptions exist, wide fluvial valleys in plains are distinctive of narrow upstream mountainous ones. Yet, the processes and rates governing along-stream valley widening over timescales characteristic of landscape development (>1-10 ka) are largely unknown. No suitable law exists in landscape evolution models, thus models imperfectly reproduce the landscape evolution at geological timescales, their rates of erosion and probably their response to tectonics and climate. Here, we study two 1 km-deep canyons in northern Chile with diachronous incision initiation, thus representing two time-stage evolutions of a similar geomorphic system characterized by valley widening following the upward migration of a major knickzone. We use 10Be cosmogenic isotope concentrations measured in colluvial deposits at the foot of hillslopes to quantify along-stream valley flank erosion rates. We observe that valley flank erosion rate increases quasi-linearly with valley-bed slope and decreases non-linearly with valley width. This relation suggests that lateral erosion increases with sediment flux due to higher channel mobility. In turn, valley width exerts a negative feedback on lateral valley flank erosion since channels in wide valleys have a lower probability of eroding the valley sides. This implies a major control of river divagation on valley flank erosion rate and valley widening. Our study provides the first data for understanding the long-term processes and rates governing valley widening in landscapes.</p>


Sedimentology ◽  
2015 ◽  
Vol 62 (7) ◽  
pp. 1923-1949 ◽  
Author(s):  
Katarina Gobo ◽  
Massimiliano Ghinassi ◽  
Wojciech Nemec
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document