scholarly journals Buffer Allocation via Bottleneck-Based Variable Neighborhood Search

2020 ◽  
Vol 10 (23) ◽  
pp. 8569
Author(s):  
Sixiao Gao ◽  
Toshimitsu Higashi ◽  
Toyokazu Kobayashi ◽  
Kosuke Taneda ◽  
Jose I. U. Rubrico ◽  
...  

This study addresses the challenging problem of efficient buffer allocation in production lines. Suitable locations for buffer allocation are determined to satisfy the desired throughput, while a suitable balance between solution quality and computation time is achieved. A throughput calculation approach that yields the state probability of production lines is adopted to evaluate the effectiveness of candidate buffer allocation solutions. To generate candidate buffer allocation solutions, an active probability index based on state probability is proposed to rapidly detect suitable locations of buffer allocations. A variable neighborhood search algorithm is used to maintain acceptable solution quality; an additional neighborhood structure is used in the case where no satisfactory solution is generated in the initial neighborhood structure. Extensive numerical experiments demonstrate the efficacy of the proposed approach. The proposed approach can facilitate agile design of production lines in industry by rapidly estimating production line topologies.

2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Ibrahim Alharkan ◽  
Khaled Bamatraf ◽  
Mohammed A. Noman ◽  
Husam Kaid ◽  
Emad S. Abouel Nasr ◽  
...  

Variable neighborhood search (VNS) algorithm is proposed for scheduling identical parallel machine. The objective is to study the effect of adding a new neighborhood structure and changing the order of the neighborhood structures on minimizing the makespan. To enhance the quality of the final solution, a machine based encoding method and five neighborhood structures are used in VNS. Two initial solution methods which were used in two versions of improved VNS (IVNS) are employed, namely, longest processing time (LPT) initial solution, denoted as HIVNS, and random initial solution, denoted as RIVNS. The proposed versions are compared with LPT, simulated annealing (SA), genetic algorithm (GA), modified variable neighborhood search (MVNS), and improved variable neighborhood search (IVNS) algorithms from the literature. Computational results show that changing the order of neighborhood structures and adding a new neighborhood structure can yield a better solution in terms of average makespan.


2021 ◽  
Author(s):  
H. R. E. H. Bouchekara ◽  
M. S. Shahriar ◽  
M. S. Javaid ◽  
Y. A. Sha’aban ◽  
M. Zellagui ◽  
...  

2012 ◽  
Vol 178-181 ◽  
pp. 1802-1805
Author(s):  
Chun Yu Ren

The paper is focused on the Multi-cargo Loading Problem (MCLP). Tabu search algorithm is an algorithm based on neighborhood search. According to the features of the problem, the essay centered the construct initial solution to construct neighborhood structure. For the operation, 1-move and 2-opt were applied, it can also fasten the speed of convergence, and boost the search efficiency. Finally, the good performance of this algorithm can be proved by experiment calculation and concrete examples.


Author(s):  
Manel Kammoun ◽  
Houda Derbel ◽  
Bassem Jarboui

In this work we deal with a generalized variant of the multi-vehicle covering tour problem (m-CTP). The m-CTP consists of minimizing the total routing cost and satisfying the entire demand of all customers, without the restriction of visiting them all, so that each customer not included in any route is covered. In the m-CTP, only a subset of customers is visited to fulfill the total demand, but a restriction is put on the length of each route and the number of vertices that it contains. This paper tackles a generalized variant of the m-CTP, called the multi-vehicle multi-covering Tour Problem (mm-CTP), where a vertex must be covered several times instead of once. We study a particular case of the mm-CTP considering only the restriction on the number of vertices in each route and relaxing the constraint on the length (mm-CTP-p). A hybrid metaheuristic is developet by combining Genetic Algorithm (GA), Variable Neighborhood Descent method (VND), and a General Variable Neighborhood Search algorithm (GVNS) to solve the problem. Computational experiments show that our approaches are competitive with the Evolutionary Local Search (ELS) and Genetic Algorithm (GA), the methods proposed in the literature.


Author(s):  
Arslan Ali Syed ◽  
Irina Gaponova ◽  
Klaus Bogenberger

The majority of transportation problems include optimizing some sort of cost function. These optimization problems are often NP-hard and have an exponential increase in computation time with the increase in the model size. The problem of matching vehicles to passenger requests in ride hailing (RH) contexts typically falls into this category.Metaheuristics are often utilized for such problems with the aim of finding a global optimal solution. However, such algorithms usually include lots of parameters that need to be tuned to obtain a good performance. Typically multiple simulations are run on diverse small size problems and the parameters values that perform the best on average are chosen for subsequent larger simulations.In contrast to the above approach, we propose training a neural network to predict the parameter values that work the best for an instance of the given problem. We show that various features, based on the problem instance and shareability graph statistics, can be used to predict the solution quality of a matching problem in RH services. Consequently, the values corresponding to the best predicted solution can be selected for the actual problem. We study the effectiveness of above described approach for the static assignment of vehicles to passengers in RH services. We utilized the DriveNow data from Bavarian Motor Works (BMW) for generating passenger requests inside Munich, and for the metaheuristic, we used a large neighborhood search (LNS) algorithm combined with a shareability graph.


Sign in / Sign up

Export Citation Format

Share Document