scholarly journals Integrated Control and Protection Architecture for Islanded PV-Battery DC Microgrids: Design, Analysis and Experimental Verification

2020 ◽  
Vol 10 (24) ◽  
pp. 8847
Author(s):  
Ali Abdali ◽  
Kazem Mazlumi ◽  
Josep M. Guerrero

Direct current (dc) microgrids have gained significant interest in research due to dc generation/storage technologies—such as photovoltaics (PV) and batteries—increasing performance and reducing in cost. However, proper protection and control systems are critical in order to make dc microgrids feasible. This paper aims to propose a novel integrated control and protection scheme by using the state-dependent Riccati equation (SDRE) method for PV-battery based islanded dc microgrids. The dc microgrid under study consists of photovoltaic (PV) generation, a battery energy storage system (BESS), a capacitor bank and a dc load. The aims of this study are fast fault detection and voltage control of the dc load bus. To do so, the SDRE observer-controller—a nonlinear mathematical model—is employed to model the operation of the dc microgrid. Simulation results show that the proposed SDRE method is effective for fault detection and robust against external disturbances, resulting in it being capable of controlling the dc load bus voltage during disturbances. Finally, the dc microgrid and its proposed protection scheme are implemented in an experimental testbed prototype to verify the fault detection algorithm feasibility. The experimental results indicate that the SDRE scheme can effectively detect faults in a few milliseconds.

Energies ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 1823 ◽  
Author(s):  
Abdul Howlader ◽  
Hidehito Matayoshi ◽  
Saeed Sepasi ◽  
Tomonobu Senjyu

Currently, the Direct-Current (DC) microgrid has been gaining popularity because most electronics devices require a DC power input. A DC microgrid can significantly reduce the AC to DC energy conversion loss. However, a power grid may experience a line fault situation that may damage important household devices and cause a blackout in the power system. This work proposes a new line fault protection scheme for a DC microgrid system by using a battery energy storage system (BESS). Nowadays, the BESS is one of the most cost effective energy storage technologies for power system applications. The proposed system is designed from a distributed wind farm smart grid. A total of three off-shore wind farms provide power to the grid through a high voltage DC (HVDC) transmission line. The DC microgrid was modeled by a BESS with a bi-directional DC–DC converter, various DC-loads with step down DC–DC converters, a voltage source converter, and a voltage source inverter. Details of the control strategies of the DC microgrid are described. During the line fault situation, a transient voltage was controlled by a BESS. From the simulation analyses, it is confirmed that the proposed method can supply stable power to the DC grid, which can also ensure protection of several loads of the DC microgrid. The effectiveness of the proposed system is verified by in a MATLAB/SIMULINK® environment.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1202
Author(s):  
Miguel Tradacete ◽  
Carlos Santos ◽  
José A. Jiménez ◽  
Fco Javier Rodríguez ◽  
Pedro Martín ◽  
...  

This paper describes a practical approach to the transformation of Base Transceiver Stations (BTSs) into scalable and controllable DC Microgrids in which an energy management system (EMS) is developed to maximize the economic benefit. The EMS strategy focuses on efficiently managing a Battery Energy Storage System (BESS) along with photovoltaic (PV) energy generation, and non-critical load-shedding. The EMS collects data such as real-time energy consumption and generation, and environmental parameters such as temperature, wind speed and irradiance, using a smart sensing strategy whereby measurements can be recorded and computing can be performed both locally and in the cloud. Within the Spanish electricity market and applying a two-tariff pricing, annual savings per installed battery power of 16.8 euros/kW are achieved. The system has the advantage that it can be applied to both new and existing installations, providing a two-way connection to the electricity grid, PV generation, smart measurement systems and the necessary management software. All these functions are integrated in a flexible and low cost HW/SW architecture. Finally, the whole system is validated through real tests carried out on a pilot plant and under different weather conditions.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 277
Author(s):  
Ivan Grcić ◽  
Hrvoje Pandžić ◽  
Damir Novosel

Fault detection in microgrids presents a strong technical challenge due to the dynamic operating conditions. Changing the power generation and load impacts the current magnitude and direction, which has an adverse effect on the microgrid protection scheme. To address this problem, this paper addresses a field-transform-based fault detection method immune to the microgrid conditions. The faults are simulated via a Matlab/Simulink model of the grid-connected photovoltaics-based DC microgrid with battery energy storage. Short-time Fourier transform is applied to the fault time signal to obtain a frequency spectrum. Selected spectrum features are then provided to a number of intelligent classifiers. The classifiers’ scores were evaluated using the F1-score metric. Most classifiers proved to be reliable as their performance score was above 90%.


Energies ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 1887 ◽  
Author(s):  
Jaber Abu Qahouq ◽  
Yuan Cao

This paper presents and evaluates a control scheme and a power electronics architecture for a Wirelessly Enabled and Distributed Battery Energy Storage (WEDES) system. It includes several independent battery modules (WEDES-MX modules) that transfer both power and information wirelessly to an On-Board Unit (OBU). Using wirelessly communicated State-Of-Charge (SOC) information from the WEDES-MX modules, the OBU part of the WEDES controller generates control commands and send them back to the WEDES-MX modules in order to control the amount of power/energy drawn from each WEDES-MX module and achieve SOC balancing. The presented controller also allows the WEDES system to maintain operation with a regulated bus voltage even if one or more WEDES-MX modules are removed or fail and under both balanced and unbalanced SOC conditions. The WEDES system with the presented WEDES controller when utilized in Electric Vehicle (EV) application, can allow for fast and safe exchange/swapping of WEDES-MX modules at an exchange station, home, or work and therefore potentially eliminating the range (mileage) anxiety issue that is associated with EVs’ range and the needed recharging time. The main objective of this paper is to present and evaluate the WEDES discharging controller for the WEDES system and present preliminary proof-of-concept scaled-down experimental prototype results.


2013 ◽  
Vol 397-400 ◽  
pp. 1178-1183
Author(s):  
Xi Kun Chen ◽  
Hui Feng Zhu

With the development of clean energy, lithium battery is paid more and more attention because of its outstanding energy storage characteristics .So the novel bi-directional lithium battery charger topology is presented in this paper and operating theory is analyzed clearly. It can make the energy bi-directional flow between the power grid and battery as needed. And it can also fully adapt to the lithium battery charging and discharging characteristics. Based on phase shifting control, the output voltage ripple and the inductor current ripple can be reduced in the condition of the same input and output, and the DC bus voltage can also be improved. This bi-directional lithium battery charger topology can be widely used in battery energy storage system.


Sign in / Sign up

Export Citation Format

Share Document