scholarly journals Impact of Technical, Human, and Organizational Risks on Reliability of Fire Safety Systems in High-Rise Residential Buildings—Applications of an Integrated Probabilistic Risk Assessment Model

2020 ◽  
Vol 10 (24) ◽  
pp. 8918
Author(s):  
Samson Tan ◽  
Darryl Weinert ◽  
Paul Joseph ◽  
Khalid Moinuddin

The current paper presents an application of an alternative probabilistic risk assessment methodology that incorporates technical, human, and organizational risks (T-H-O-Risk) using Bayesian network (BN) and system dynamics (SD) modelling. Seven case studies demonstrate the application of this holistic approach to the designs of high-rise residential buildings. An incremental risk approach allows for quantification of the impact of human and organizational errors (HOEs) on different fire safety systems. The active systems considered are sprinklers, building occupant warning systems, smoke detectors, and smoke control systems. The paper presents detailed results from T-H-O-Risk modelling for HOEs and risk variations over time utilizing the SD modelling to compare risk acceptance in the seven case studies located in Australia, New Zealand, Hong Kong, Singapore, and UK. Results indicate that HOEs impact risks in active systems up to ~33%. Large variations are observed in the reliability of active systems due to HOEs over time. SD results indicate that a small behavioral change in ’risk perception’ of a building management team can lead to a very large risk to life variations over time through the self-reinforcing feedback loops. The quantification of difference in expected risk to life due to technical, human, and organizational risks for seven buildings for each of 16 trial designs is a novel aspect of this study. The research is an important contribution to the development of the next generation building codes and risk assessment methods.

2021 ◽  
Vol 11 (6) ◽  
pp. 2590
Author(s):  
Samson Tan ◽  
Darryl Weinert ◽  
Paul Joseph ◽  
Khalid Moinuddin

Given that existing fire risk models often ignore human and organizational errors (HOEs) ultimately leading to underestimation of risks by as much as 80%, this study employs a technical-human-organizational risk (T-H-O-Risk) methodology to address knowledge gaps in current state-of-the-art probabilistic risk analysis (PRA) for high-rise residential buildings with the following goals: (1) Develop an improved PRA methodology to address concerns that deterministic, fire engineering approaches significantly underestimate safety levels that lead to inaccurate fire safety levels. (2) Enhance existing fire safety verification methods by incorporating probabilistic risk approach and HOEs for (i) a more inclusive view of risk, and (ii) to overcome the deterministic nature of current verification methods. (3) Perform comprehensive sensitivity and uncertainty analyses to address uncertainties in numerical estimates used in fault tree/event trees, Bayesian network and system dynamics and their propagation in a probabilistic model. (4) Quantification of human and organizational risks for high-rise residential buildings which contributes towards a policy agenda in the direction of a sustainable, risk-based regulatory regime. This research contributes to the development of the next-generation building codes and risk assessment methodologies.


2014 ◽  
Author(s):  
Paul Kennedy ◽  
Brian K. Flemming ◽  
David G. Devoy ◽  
Daniel F. Huantes ◽  
Matthew D. Flowers

Sign in / Sign up

Export Citation Format

Share Document