scholarly journals Numerical Simulation of the Mechanical Behavior of Fiber-Reinforced Cement Composites Subjected Dynamic Loading

2021 ◽  
Vol 11 (3) ◽  
pp. 1112
Author(s):  
Nikita Belyakov ◽  
Olga Smirnova ◽  
Aleksandr Alekseev ◽  
Hongbo Tan

The problem of damage accumulation in fiber-reinforced concrete to structures supporting underground workings and tunnel linings against dynamic loading is insufficiently studied. The mechanical properties were determined and the mechanism of destruction of fiber-reinforced concrete with different reinforcement parameters is described. The parameters of the Concrete Damaged Plasticity model for fiber-reinforced concrete at different reinforcement properties are based on the results of lab experiments. Numerical simulation of the composite concrete was performed in the Simulia Abaqus software package (Dassault Systemes, Vélizy-Villacoublay, France). Modeling of tunnel lining based on fiber-reinforced concrete was performed under seismic loading.

2021 ◽  
Vol 11 (18) ◽  
pp. 8759
Author(s):  
Eva Zezulová ◽  
Kamila Hasilová ◽  
Petr Dvořák ◽  
Branislav Dubec ◽  
Tereza Komárková ◽  
...  

Fortification structures, both military and civilian, are designed to resist a blast explosion to some extent. Their technical condition after a blast load must be assessed in a fast and reliable way to enable the users’ decision about the future use of the structure. Preferably, for the assessment of the protective structure, the non-destructive testing method should be used. To assess the suitability of ultrasound testing method for fortification structures built from steel fiber reinforced concrete, an investigation in a laboratory and in situ was conducted, together with numerical simulation and statistical evaluation. The numerical simulation of the blast load of a steel fiber reinforced concrete slab was conducted using multiphysics simulation software with the aim to verify basic parameters of the field experiment. During the field tests, several slabs were loaded by plastic explosive and changes in the structure of the slabs, before and after the blast load, were examined using the ultrasound pass-through method. After the field tests, the slabs were subjected to a destructive laboratory test to determine their residual strength. Subsequently, the data sets obtained from the measurements were tested using functional data analysis. The results from the ultrasound pulse method show that specimens after a dynamic blast load can in some cases increase the strength of their cement matrix.


2015 ◽  
Vol 732 ◽  
pp. 377-380 ◽  
Author(s):  
Jindřich Fornůsek ◽  
Michal Tvarog

This paper deals about behavior of fiber reinforced cement composite in dependence on the casting direction. Almost fifty concrete prisms of size 400 x 100 x 100 mm were cast; half of these were fiber reinforced concrete (FRC) and the other half was ultra-high performance fiber reinforced concrete (UHPFRC). Approximately one half of both mixtures was cast in horizontal direction and the other half vertically. It was found that the specific fracture energy of horizontally cast prisms was approximately 4,5 times larger for both materials than the vertically cast ones. Ultimate loads of FRC were very similar for both casting directions. Peak loads of the horizontally cast UHPFRC prisms were approximately 3 times larger than the vertically cast ones. This research confirmed that there is significant influence of the casting direction on the fiber reinforced concrete characteristics.


Sign in / Sign up

Export Citation Format

Share Document