scholarly journals Numerical Modeling of Nonlinear Response of Seafloor Porous Saturated Soil Deposits to SH-Wave Propagation

2021 ◽  
Vol 11 (4) ◽  
pp. 1854
Author(s):  
Artem A. Krylov ◽  
Dmitry A. Alekseev ◽  
Sergey A. Kovachev ◽  
Elena A. Radiuk ◽  
Mikhail A. Novikov

Numerical modeling of seismic response of soil deposits is usually conducted as part of seismic hazard assessment, preceding facility construction in any tectonically active regions, including offshore sites. A significant feature of subsea soils is their porous and water-saturated structure. Thus, the purpose of the present study is to introduce a procedure for modeling nonlinear behavior of porous, moist soils during SH-wave propagation, to verify it and compare response for synthetic soil profiles with porous medium parameters specific for low moisture onshore and high moisture offshore sites with cohesive and non-cohesive soils. The well-known and approved NERA code was used as a basis and improved to incorporate the Biot and Gassman equations for elastic waves propagation in a fluid-saturated porous solid. The applicability of the presented approach was substantiated for integration into other well-known algorithms. Obtained results showed good agreement between the simulated by different methods and observed spectra. The modeling also showed that the response of cohesive and non-cohesive soils with moisture specific both for onshore and offshore sites is explained by effects of resonances and effect of seismic amplitude saturation, which, in turn, depend on the corresponding value of the layer thickness and S-wave impedance for porous saturated soil layer. The proposed scheme could have significant practical usage for studying the effect of porous medium parameters on the seismic response of the moist soil deposits.

2008 ◽  
Author(s):  
C. Smerzini ◽  
J. Avilés ◽  
F. J. Sánchez-Sesma ◽  
R. Paolucci ◽  
Adolfo Santini ◽  
...  

Author(s):  
Haozhe Jiang ◽  
Zhanhua Cai ◽  
Lili Yuan ◽  
Tingfeng Ma ◽  
Jianke Du ◽  
...  
Keyword(s):  

Author(s):  
Xiaodong Zhao ◽  
Guoqing Zhou ◽  
Bo Wang ◽  
Wei Jiao ◽  
Jing Yu

Artificial frozen soils (AFS) have been used widely as temporary retaining walls in strata with soft and water-saturated soil deposits. After excavations, frozen soils thaw, and the lateral earth pressure penetrates through the soils subjected to freeze–thaw, and acts on man-made facilities. Therefore, it is important to investigate the lateral pressure (coefficient) responses of soils subjected to freeze–thaw to perform structure calculations and stability assessments of man-made facilities. A cubical testing apparatus was developed, and tests were performed on susceptible soils under conditions of freezing to a stable thermal gradient and then thawing with a uniform temperature (Fnonuni–Tuni). The experimental results indicated a lack of notable anisotropy for the maximum lateral preconsolidated pressures induced by the specimen’s compaction and freeze–thaw. However, the freeze–thaw led to a decrement of lateral earth pressure coefficient  K0, and  K0 decrement under the horizontal Fnonuni–Tuni was greater than that under the vertical Fnonuni–Tuni. The measured  K0 for normally consolidated and over-consolidated soil specimens exhibited anisotropic characteristics under the vertical Fnonuni–Tuni and horizontal Fnonuni–Tuni treatments. The anisotropies of  K0 under the horizontal Fnonuni–Tuni were greater than that under the vertical Fnonuni–Tuni, and the anisotropies were more noticeable in the unloading path than that in the loading path. These observations have potential significances to the economical and practical design of permanent retaining walls in soft and water-saturated soil deposits.


2015 ◽  
Vol 1101 ◽  
pp. 471-479
Author(s):  
Georges Freiha ◽  
Hiba Othman ◽  
Michel Owayjan

The study of signals propagation inside porous media is an important field especially in the biomedical research related to compact bones. The purpose of this paper is to determine a mathematical formulation of the global coefficients of transmission and reflection of nondestructive ultrasonic waves in any bi-phase porous medium. Local coefficients of transmission and reflection on the interface of the porous medium will be determined based on a study of boundary conditions. The behavior of different waves inside the porous medium will be developed so that we can derive a new formulation of global coefficients that takes interior phenomena into consideration. Results are found independently of the geometrical and physical characteristics of the medium. Note that this study is based on normal incident ultrasonic wave propagation.


Sign in / Sign up

Export Citation Format

Share Document