scholarly journals Design of External Rotor Ferrite-Assisted Synchronous Reluctance Motor for High Power Density

2021 ◽  
Vol 11 (7) ◽  
pp. 3102
Author(s):  
Md. Zakirul Islam ◽  
Seungdeog Choi ◽  
Malik E. Elbuluk ◽  
Sai Sudheer Reddy Bonthu ◽  
Akm Arafat ◽  
...  

The rare-earth (RE) permanent magnets (PM) have been increasingly adopted in traction motor application. However, the RE PM is expensive, less abundant, and has cost uncertainties due to limited market suppliers. This paper presents a new design of a RE-free five-phase ferrite permanent magnet-assisted synchronous reluctance motor (Fe-PMaSynRM) with the external rotor architecture with a high saliency ratio. In such architecture, the low magnetic coercivity and demagnetization risk of the ferrite PM is the challenge. This limits the number of flux barriers, saliency ratio, and reluctance torque. A precise analytical design procedure of rotor and stator configuration is presented with differential evolution numerical optimizations by utilizing a lumped parameter model. A 3.7 kW prototype is fabricated to validate the proposed idea.

2018 ◽  
Vol 55 (4) ◽  
pp. 13-23 ◽  
Author(s):  
A. Rassõlkin ◽  
A. Kallaste ◽  
S. Orlova ◽  
L. Gevorkov ◽  
T. Vaimann ◽  
...  

Abstract The paper discusses the current developments in the recycling of electrical machines. The main attention is devoted to three types of motors: synchronous reluctance motor, permanent magnet assisted synchronous reluctance motor, and induction motor. Base materials of such electrical machines are also described in the paper. Rare-earth permanent magnets used in electrical machines are review separately. Moreover, the paper considers the features of the disassembly and recycling options.


AIP Advances ◽  
2017 ◽  
Vol 7 (5) ◽  
pp. 056648 ◽  
Author(s):  
Wenye Wu ◽  
Xiaoyong Zhu ◽  
Li Quan ◽  
Deyang Fan ◽  
Zixuan Xiang

Author(s):  
Borys Liubarskyi ◽  
Dmytro Iakunin ◽  
Oleh Nikonov ◽  
Dmytro Liubarskyi ◽  
Vladyslav Vasenko ◽  
...  

This paper reports the construction of a mathematical model for determining the electromagnetic momentum of a synchronous reluctance motor with non-partitioned permanent magnets. Underlying it is the calculation of the engine magnetic field using the finite-element method in the flat-parallel problem statement. The model has been implemented in the FEMM finite-element analysis environment. The model makes it possible to determine the engine's electromagnetic momentum for various rotor geometries. The problem of conditional optimization of the synchronous reluctance motor rotor was stated on the basis of the rotor geometric criteria. As an analysis problem, it is proposed to use a mathematical model of the engine's magnetic field. Constraints for geometric and strength indicators have been defined. The Nelder-Mead method was chosen as the optimization technique. The synthesis of geometrical parameters of the synchronous reluctance motor rotor with non-partitioned permanent magnets has been proposed on the basis of solving the problem of conditional optimization. The restrictions that are imposed on optimization parameters have been defined. Based on the study results, the dependence of limiting the angle of rotation of the magnet was established on the basis of strength calculations. According to the calculation results based on the proposed procedure, it is determined that the optimal distance from the interpole axis and the angle of rotation of magnets is at a limit established by the strength of the rotor structure. Based on the calculations, the value of the objective function decreased by 24.4 % (from −847 Nm to −1054 Nm), which makes it possible to significantly increase the electromagnetic momentum only with the help of the optimal arrangement of magnets on the engine rotor. The results of solving the problem of synthesizing the rotor parameters for a trolleybus traction motor helped determine the optimal geometrical parameters for arranging permanent magnets.


Sign in / Sign up

Export Citation Format

Share Document