scholarly journals Brunelleschi’s Dome: A New Estimate of the Thrust and Stresses in the Underlying Piers

2021 ◽  
Vol 11 (9) ◽  
pp. 4268
Author(s):  
Mario Como

The paper deals with the insurgence of the thrust, together with its valuation, in masonry domes, giving special attention to the Brunelleschi’s Dome in Florence. After a recalling of the kinematical approach in the context of the Heyman masonry model, the thrust of Brunelleschi’s Dome is estimated as the maximum of the set of all the kinematical ones. Comparisons are made with other valuations made by the usual, but less accurate, statical approach. The knowledge of the thrust allows an evaluation of the stresses acting in the supporting piers: their base sections are all compressed, with level stresses sufficiently low. This result shows the extraordinary conception of Filippo Brunelleschi’s Dome and the favorable design of the pillar sections and of the drum positioning, due, perhaps, to Arnolfo di Cambio or to the succeeding Masters.

Author(s):  
Nicola A. Nodargi ◽  
Paolo Bisegna

AbstractThe static limit analysis of axially symmetric masonry domes subject to pseudo-static seismic forces is addressed. The stress state in the dome is represented by the shell stress resultants (normal-force tensor, bending-moment tensor, and shear-force vector) on the dome mid-surface. The classical differential equilibrium equations of shells are resorted to for imposing the equilibrium of the dome. Heyman’s assumptions of infinite compressive and vanishing tensile strength, alongside with cohesive-frictional shear response, are adopted for imposing the admissibility of the stress state. A finite difference method is proposed for the numerical discretization of the problem, based on the use of two staggered rectangular grids in the parameter space generating the dome mid-surface. The resulting discrete static limit analysis problem results to be a second-order cone programming problem, to be effectively solved by available convex optimization softwares. In addition to a convergence analysis, numerical simulations are presented, dealing with the parametric analysis of the collapse capacity under seismic forces of spherical and ogival domes with parameterized geometry. In particular, the influence that the shear response of masonry material and the distribution of horizontal forces along the height of the dome have on the collapse capacity is explored. The obtained results, that are new in the literature, show the computational merit of the proposed method, and quantitatively shed light on the seismic resistance of masonry domes.


Author(s):  
Xu Yang ◽  
Zhaohui Shang ◽  
Keliang Hu ◽  
Yi Hu ◽  
Bin Ma ◽  
...  

Abstract Dome A in Antarctica has many characteristics that make it an excellent site for astronomical observations, from the optical to the terahertz. Quantitative site testing is still needed to confirm the site’s properties. In this paper, we present a statistical analysis of cloud cover and aurora contamination from the Kunlun Cloud and Aurora Monitor (KLCAM). KLCAM is an automatic, unattended all-sky camera aiming for long-term monitoring of the usable observing time and optical sky background at Dome A. It was installed at Dome A in January 2017, worked through the austral winter, and collected over 47,000 images over 490 days. A semi-quantitative visual data analysis of cloud cover and auroral contamination was carried out by five individuals. The analysis shows that the night sky was free of clouds for 83 per cent of the time, which ranks Dome A highly in a comparison with other observatory sites. Although aurorae were detected somewhere on an image for nearly 45 per cent of the time, the chance of a point on the sky being affected by an aurora is small. The strongest auroral emission lines can be filtered out with customized filters.


2018 ◽  
Vol 131 (995) ◽  
pp. 015001 ◽  
Author(s):  
Yi Hu ◽  
Keliang Hu ◽  
Zhaohui Shang ◽  
Michael C. B. Ashley ◽  
Bin Ma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document