scholarly journals Geotechnical Design Practices and Soil–Structure Interaction Effects of an Integral Bridge System: A Review

2021 ◽  
Vol 11 (15) ◽  
pp. 7131
Author(s):  
Lila Dhar Sigdel ◽  
Ahmed Al-Qarawi ◽  
Chin Jian Leo ◽  
Samanthika Liyanapathirana ◽  
Pan Hu

Integral bridges are a class of bridges with integral or semi-integral abutments, designed without expansion joints in the bridge deck of the superstructure. The significance of an integral bridge design is that it avoids durability and recurring maintenance issues with bridge joints, and maybe bearings, which are prevalent in traditional bridges. Integral bridges are less costly to construct. They require less maintenance and therefore cause less traffic disruptions that incur socio-economic costs. As a consequence, integral bridges are becoming the first choice of bridge design for short-to-medium length bridges in many countries, including the UK, USA, Europe, Australia, New Zealand and many other Asian countries. However, integral bridge designs are not without challenges: issues that concern concrete creep, shrinkage, temperature effects, bridge skew, structural constraints, as well as soil–structure interactions are amplified in integral bridges. The increased cyclic soil–structure interactions between the bridge structure and soil will lead to adverse soil ratcheting and settlement bump at the bridge approach. If movements from bridge superstructures were also transferred to pile-supported substructures, there is a risk that the pile–soil interactions may lead to pile fatigue failure. These issues complicate the geotechnical aspects of integral bridges. The aim of this paper is to present a comprehensive review of current geotechnical design practices and the amelioration of soil–structure interactions of integral bridges.

2020 ◽  
Vol 10 (1) ◽  
pp. 499-505
Author(s):  
Andrzej Helowicz

AbstractThis paper describes a small single-span integral bridge made of in-situ concrete. The bridge was designed by the author and built on the M9 motorway between the towns of Waterford and Kilcullen in Ireland. Selected parts of the bridge design are presented. First the principles of modelling and designing integral bridges and culverts are explained. Then the considered bridge’s design is described. The advantages and disadvantages of such structures are discussed. The focus is on the design, construction, cost and in-service behaviour of small integral bridges and culverts. In Conclusions the author shares his knowledge and experience relating to the design of small integral bridges and culverts and puts forward recommendations as to further research on this type of structures in Poland.


Bauingenieur ◽  
2020 ◽  
Vol 95 (11) ◽  
pp. S 2-S 11
Author(s):  
H. D. B. Aji ◽  
M. B. Basnet ◽  
Frank Wuttke

Abstract The identification of the dynamic behaviour of a structure is one of the crucial steps in the design of the dynamic resistance of the structure. The dynamic behaviour is represented by the natural frequencies and damping which are subsequently used along with the considered dynamic actions in the design process. In regard of integral bridge concept, one of the consequences of the omission of joints and bearings is the substantial soil-structure interaction which in turn increases the sensitivity of the dynamic behaviour of the bridges to the surrounding soil characteristic. In this article, we extended our hybrid BEM-FEM steady-state dynamic numerical tool to the 3D regime, developed by utilizing an in-house BEM and the commercial FEM software ABAQUS and use it to analyse the dynamic interaction between the bridge and the underlying soil as well as the backfill. The numerical results from four typical integral bridges show that underlying soil characteristic has great effect on the resonant frequencies and the damping. The backfill material properties tend to have less significant role due to the abutment wingwalls dominating the force transfer between the soil and the superstructure. The results also show that the degree of influence of the soil-structure interaction on the coupled system is affected by the type of load pattern in addition to the flexural stiffness of the superstructure.


Author(s):  
Jessica Sandberg ◽  
Luca Magnino ◽  
Paul Nowak ◽  
Michael Wiechecki ◽  
Indrasenan Thusyanthan

2016 ◽  
Vol 106 ◽  
pp. 484-494 ◽  
Author(s):  
Dunja Perić ◽  
Marta Miletić ◽  
Bhavik R. Shah ◽  
Asad Esmaeily ◽  
Hongyu Wang

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Siva Avudaiappan ◽  
Kinson Prabu ◽  
Deban Selvaraj ◽  
Kiran Raja ◽  
Paul Oluwaseun Awoyera ◽  
...  

In general, most highway bridges are constructed using prestressed concrete or steel girders. Mechanical joints are provided at the end of each span, to allow for the expansion of the bridge deck due to shrinkage of concrete, thermal effects, and deflections, among others. Smooth riding ability, low noise, wear resistance, and water tightness should be provided by expansion joints. In recent times, the increased traffic volume, along with heavier vehicle movements, adversely affects the performance of expansion joints in the bridge girder, causing a possible failure in one of the above-mentioned mechanisms. The deterioration of the expansion joint may result in leakage of water, concrete cracking, and potential problems in the underlying substructure. In this paper, we study the pier-pier cap connections in integral bridges subjected to thermal and seismic loads using analytical methods and experimental tests.


Sign in / Sign up

Export Citation Format

Share Document