scholarly journals Design of Inverted Nano-Cone Arrayed SERS Substrate for Rapid Detection of Pathogens

2021 ◽  
Vol 11 (17) ◽  
pp. 8067
Author(s):  
Zixun Jia ◽  
Sarah Asiri ◽  
Asma Elsharif ◽  
Widyan Alamoudi ◽  
Ebtesam Al-Suhaimi ◽  
...  

Rapid detection of bacteria is a very critical and important part of infectious disease treatment. Sepsis kills more than 25 percent of its victims, resulting in as many as half of all deaths in hospitals before identifying the pathogen for patients to get the right treatment. Raman spectroscopy is a promising candidate in pathogen diagnosis given its fast and label-free nature, only if the concentration of the pathogen is high enough to provide reasonable sensitivity. This work reports a new design of surface-enhanced Raman spectroscopy (SERS) substrate which will provide high enough sensitivity and fast and close contact of the target structure to the optical hot spots for immunomagnetic capturing-based bacteria-concentrating technique. The substrate uses inverted nanocone structure arrays made of transparent PDMS (Polydimethylsiloxane) to funnel the light from the bottom to the top of the cones where plasmonic gold nanorods are located. A high reflective and low loss layer is deposited on the outer surface of the cone. Given the geometry of cones, photons are multi-reflected by the outer layer and thus the number density of photons at hotspots increases by an order of magnitude, which could be high enough to detect immunomagnetically densified bacteria.

2018 ◽  
Vol 2018 ◽  
pp. 1-13
Author(s):  
Xiaowei Cao ◽  
Zhenyu Wang ◽  
Liyan Bi ◽  
Jie Zheng

Surface-enhanced Raman spectroscopy (SERS) is a good candidate for the development of fast and easy-to-use diagnostic tools, possibly used on serum in screening tests. In this study, a potential label-free serum test based on SERS spectroscopy was developed to analyze human serum for the diagnosis of the non-small cell lung cancer (NSCLC). We firstly synthesized novel highly branched gold nanoparticles (HGNPs) at high yield through a one-step reduction of HAuCl4 with dopamine hydrochloride at 60°C. Then, HGNP substrates with good reproducibility, uniformity, and high SERS effect were fabricated by the electrostatically assisted (3-aminopropyl) triethoxysilane-(APTES-) functionalized silicon wafer surface-sedimentary self-assembly method. Using as-prepared HGNP substrates as a high-performance sensing platform, SERS spectral data of serum obtained from healthy subjects, lung adenocarcinoma patients, lung squamous carcinoma patients, and large cell lung cancer patients were collected. The difference spectra among different types of NSCLC were compared, and analysis result revealed their intrinsic difference in types and contents of nucleic acids, proteins, carbohydrates, amino acids, and lipids. SERS spectra were analyzed by principal component analysis (PCA), which was able to distinguish different types of NSCLC. Considering its time efficiency, being label-free, and sensitivity, SERS based on HGNP substrates is very promising for mass screening NSCLC and plays an important role in the detection and prevention of other diseases.


2018 ◽  
Vol 90 (21) ◽  
pp. 12670-12677 ◽  
Author(s):  
Stefano Fornasaro ◽  
Alois Bonifacio ◽  
Elena Marangon ◽  
Mauro Buzzo ◽  
Giuseppe Toffoli ◽  
...  

2016 ◽  
Vol 8 (7) ◽  
pp. 1602-1608 ◽  
Author(s):  
Shintaro Pang ◽  
Lili He

Aptamer–gold nanoparticle (AuNP) based colorimetric assays have become increasingly popular as viable rapid detection methods, but the molecular interactions governing the mechanism and successful interpretation of color changes have not been explored well.


Sign in / Sign up

Export Citation Format

Share Document