scholarly journals Force Sensation Induced by Electrical Stimulation of the Tendon of Biceps Muscle

2021 ◽  
Vol 11 (17) ◽  
pp. 8225
Author(s):  
Akifumi Takahashi ◽  
Hiroyuki Kajimoto

Many wearable interfaces have been proposed to present force to the upper limb and elbow joint. One way to achieve a compact wearable haptic interface is to use electrical stimulation, and we have suggested that transcutaneous electrical stimulation above the wrist tendon can produce force a sensation in the direction of the muscle stretching; however, it has not been investigated in detail whether the force sensation presented by the electrical stimulation of the tendon occurs in the upper limb joints. In this study, to investigate whether the force sensation is generated when applying electrical stimulation of the skin at the tendon or at the muscle belly of the biceps brachii muscle, we quantitatively evaluated the direction and amount of the force sensation under the aforementioned conditions. The results showed that the electrical stimulation of the tendon produced significant force sensation in the direction of elbow extension. On the other hand, in some participants, the electrical stimulation of the muscle belly worked as a supporting force, resulting in the sensation of weakened force perception. In general, we concluded that the sensation produced by muscle stimulation was different from that produced by stimulation of the tendon.

2010 ◽  
Vol 2 (2) ◽  
pp. 127-130
Author(s):  
Cheng H. Lo ◽  
Christopher Coombs ◽  
Simon N. Bell

Closed traumatic disruptions of biceps brachii muscle belly are rarely seen. In this paper, we report two rare cases of biceps brachii muscle belly rupture sustained while water-skiing or wakeboarding and discuss the mechanism of injury, management and outcomes after a literature review. A review of published articles revealed only three previously reported cases of water skiing related biceps muscle rupture. It is important to be vigilant of these injuries, given that early recognition and operative intervention with or without direct muscle repair may optimise outcomes.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Wei Li ◽  
Chong Li ◽  
Quan Xu ◽  
Linhong Ji

Studying the therapeutic effects of focal vibration (FV) in neurorehabilitation is the focus of current research. However, it is still not fully understood how FV on upper limb muscles affects the sensorimotor cortex in healthy subjects. To explore this problem, this experiment was designed and conducted, in which FV was applied to the muscle belly of biceps brachii in the left arm. During the experiment, electroencephalography (EEG) was recorded in the following three phases: before FV, during FV, and two minutes after FV. During FV, a significant lower relative power at C3 and C4 electrodes and a significant higher connection strength between five channel pairs (Cz-FC1, Cz-C3, Cz-CP6, C4-FC6, and FC6-CP2) in the alpha band were observed compared to those before FV. After FV, the relative power at C4 in the beta band showed a significant increase compared to its value before FV. The changes of the relative power at C4 in the alpha band had a negative correlation with the relative power of the beta band during FV and with that after FV. The results showed that FV on upper limb muscles could activate the bilateral primary somatosensory cortex and strengthen functional connectivity of the ipsilateral central area (FC1, C3, and Cz) and contralateral central area (CP2, Cz, C4, FC6, and CP6). These results contribute to understanding the effect of FV over upper limb muscles on the brain cortical network.


Author(s):  
J R. de Kroon ◽  
M J. IJzerman ◽  
G J. Lankhorst ◽  
G Zilvold

Author(s):  
Wafa Tigra ◽  
David Guiraud ◽  
David Andreu ◽  
Bertrand Coulet ◽  
Anthony Gelis ◽  
...  

This article introduces a new approach of selective neural electrical stimulation of the upper limb nerves. Median and radial nerves of individuals with tetraplegia are stimulated via a multipolar cuff electrode to elicit movements of wrist and hand in acute conditions during a surgical intervention. Various configurations corresponding to various combinations of a 12-poles cuff electrode contacts are tested. Video recording and electromyographic (EMG) signals recorded via sterile surface electrodes are used to evaluate the selectivity of each stimulation configuration in terms of activated muscles. In this abstract we introduce the protocol and preliminary results will be presented during the conference.


Sign in / Sign up

Export Citation Format

Share Document