scholarly journals DEM Simulation of the Load Transfer Mechanism of a GRPS Embankment with a Fixed Geogrid Technique

2021 ◽  
Vol 11 (19) ◽  
pp. 8814
Author(s):  
Jun Zhang ◽  
Yafei Jia ◽  
Yewei Zheng ◽  
Chenxi Miao

As a new technique, a fixed geogrid in a geogrid-reinforced and pile-supported (GRPS) embankments has been used to reduce the total and differential settlement. To investigate the load transfer mechanism of the fixed geogrid technique of a GRPS embankment, three discrete element method (DEM) models of pile-supported embankments were established, including an unreinforced embankment, a geogrid reinforced embankment, and a fixed geogrid reinforced embankment. The efficacy of the pile, the evolution law of the contact force chain and the axial force of the reinforcement, and the microscopic load-bearing structure of the soil were investigated. Numerical simulation results showed that the embankment self-weight and surcharge load were transferred to the pile through the soil arching and tensile membrane effect. The settlement could be effectively reduced via the addition of the reinforcement, and the fixed geogrid technique was more conducive to improving the load-bearing ratio of the pile than the traditional reinforcement technique. Compared with the traditional technique of a GRPS embankment, the fixed geogrid technique had a better effect on reducing the total and differential settlement. With the increase in the surcharge load and the settlement of the soft subsoil, the reinforcement transferred a greater load to the pile. The results also showed that the stress of the embankment fill was concentrated at the pile top in all three models. The GRPS embankment with a fixed geogrid technique had a lower soil stress concentration than the other two cases. The contact force chain and stress in the embankment also showed that the reformation of the microscopic load-bearing system of the embankment fill was the internal mechanism that caused the development of the soil arching and the redistribution of stress. Furthermore, the evolution of the fabric parameters in the arching area could reflect the evolution of the soil arching structure. In the fixed geogrid case, the proportion of the load transferred to the pile from the soil arching effect was reduced, and the vertical load transferred to the pile top by the tensile membrane effect accounted for 22–28% in this study. Under the combined effect of the tensile membrane and the soil arching, the efficacy of the pile could increase by 10%.

2012 ◽  
Vol 204-208 ◽  
pp. 674-679
Author(s):  
Jun Hui Zhang ◽  
Zhi Yong Yin ◽  
Jian Long Zheng

The composite foundation with sparse piles to control settlement has been used to rapid construction and strict deformation of the structure widely currently, which can enhance the efficient of load transfer and decrease the differential settlement used with the geosynthetic. Considering the confine of analytical solution and the traditional method with a changeless modulus of geosynthetic and pile, the effects of the height of fill, the elastic modulus of geosynthetic and pile material on the differential settlement, embankment soil arching effect and tensioned membrane effect etc. are investigated using the computer code ABAQUS in this paper. The results indicate that the modulus of geosynthetic and pile has a notable influence on the differential settlement and the arching effect, which should be considered in the design. At the same time, the maximum tension in geosynthetic occurs near the edge of the pile cap.


2020 ◽  
Vol 61 (HTCS6) ◽  
pp. 81-87
Author(s):  
Hung Van Pham ◽  
Phuc Dinh Hoang ◽  
Thinh Duc Ta ◽  

Soft soil reinforced by rigid inclusions under embankment is a soft soil improvement method, known as a piled embankment. It has been widely studied and applied over the world, since 90’s decade of the last century. The behavior of a piled embankment is mainly based on the formation of soil arching within the embankment and the negative skin friction around inclusion shaft. The paper investigates the mechanical behavior of a piled embankment to make clear the load transfer mechanism of the method. Additionally, some of the analytical methods in determining the stress transfer efficacy are presented.


2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Keith Jennings ◽  
Patrick J. Naughton

The numerical modelling of geosynthetic-reinforced piled embankments using both the finite element method (FEM) and finite difference method (FDM) are compared. Plaxis 2D (FEM) was utilized to replicate FLAC (FDM) analysis originally presented by Han and Gabr on a unit cell axisymmetric model within a geosynthetic reinforced piled embankment (GRPE). The FEM and FED techniques were found to be in reasonable agreement, in both characteristic trend and absolute value. FEM consistently replicated the FDM outputs for deformational, loading, and load transfer mechanism (soil arching) response within the reinforced piled embankment structure with a reasonable degree of accuracy. However the FDM approach was found to give a slightly higher reinforcement tension and stress concentration but lower reinforcement strain at the pile cap than FEM, which was attributed to the greater discretize of the model geometry in the FDM than in FEM.


2007 ◽  
Vol 47 (5) ◽  
pp. 833-843 ◽  
Author(s):  
Won Pyo Hong ◽  
Jae Ho Lee ◽  
Kwang Wu Lee
Keyword(s):  

2020 ◽  
Vol 222 ◽  
pp. 111088
Author(s):  
Lili Sui ◽  
Shiyong Fan ◽  
Zhenyu Huang ◽  
Wei Zhang ◽  
Yingwu Zhou ◽  
...  

2021 ◽  
Vol 226 ◽  
pp. 111427
Author(s):  
Zhenyu Huang ◽  
Xiaolong Zhao ◽  
Wei Zhang ◽  
Zhanxia Fu ◽  
Yingwu Zhou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document