scholarly journals Thermal Battery for Electric Vehicles: High-Temperature Heating System for Solid Media Based Thermal Energy Storages

2021 ◽  
Vol 11 (21) ◽  
pp. 10500
Author(s):  
Volker Dreißigacker

Thermal energy storage systems open up high potentials for improvements in efficiency and flexibility for power plant and industrial applications. Transferring such technologies as basis for thermal management concepts in battery-electric vehicles allow alternative ways for heating the interior and avoid range limitations during cold seasons. The idea of such concepts is to generate heat electrically (power-to-heat) parallel of charging the battery, store it efficiently and discharge heat at a defined temperature level. The successful application of such concepts requires two central prerequisites: higher systemic storage densities compared to today’s battery-powered PTC heaters as well as high charging and discharging powers. A promising approach for both requirements is based on solids as thermal energy storage. These allow during discharging an efficient heat transfer to the gaseous heat transfer medium (air) due to a wide range of geometric configurations with high specific surfaces and during charging high storage densities due to use of ceramic materials suitable for high operating temperatures. However, for such concepts suitable heating systems with small dimensions are needed, allowing an efficient and homogeneous heat transfer to the solid with high charging powers and high heating temperatures. An appropriate technology for this purpose is based on resistance heating wires integrated inside the channel shaped solids. These promise high storage densities due to operating wire temperature of up to 1300 °C and an efficient heat transport via radiation. Such electrically heated storage systems have been known for a long time for stationary applications, e.g., domestic storage heaters, but are new for mobile applications. For evaluation such concepts with regard to systemic storage and power density as well as to identify preferred configurations extensive investigations are necessary. For this purpose, transient models for the relevant heat transport mechanisms and the whole storage system were created. In order to allow time-efficient simulations studies for such an electrical heated storage system, a novel correlation for the effective radiation coefficient based on the Fourier Number was derived. This coefficient includes radiation effects and thermal conduction resistances and enables through its dimensionless parameterization the investigation of the charging process for a wide range of geometrical configurations. Based on application-typical specifications and the derived Fourier based correlation, extensive variation studies regarding the storage system were performed and evaluated with respect to systemic storage densities, heating wire surface loads and dimensions. For a favored design option selected here, maximum systemic storage densities of 201 Wh/kg at maximum heating wire surface loads of 4.6 W/cm2 are achieved showing significant benefits compared to today’s battery powered PTC heaters. Additionally, for proofing and confirming the storage concept, a test rig was erected focusing experimental investigations on the charging process. For a first experimental setup-up including all relevant components, mean temperature-related deviations between the simulative and the experimental results of 4.1% were detected and storage temperatures of up to 870 °C were reached. The systematically performed results confirm the feasibility, high efficiency, thermodynamic synergies with geometric requirements during thermal discharging and the potential of the technology to reach higher systemic storage densities compared to current solutions.

2015 ◽  
Author(s):  
Reza Baghaei Lakeh ◽  
Yetlanezi B. Guerrero ◽  
Karthik Nithyanandam ◽  
Richard E. Wirz

Most of the renewable energy sources, including solar and wind suffer from significant intermittency due to day/night cycles and unpredictable weather patterns. Energy Storage systems are required to enable the renewable energy sources to continuously generate energy for the power grid. Thermal Energy Storage (TES) is one of the most promising forms of energy storage due to simplicity and economic reasons. However, heat transfer is a well-known problem of most TES systems that utilize solid state or phase change. Insufficient heat transfer impairs the functionality of the system by imposing an upper limit on the power generation. Isochoric thermal energy storage system is suggested as a low-cost alternative for salt-based thermal energy storage systems. The isochoric thermal energy storage systems utilize a liquid storage medium and benefit from enhanced heat transfer due to the presence of buoyancy-driven flows. In this study, the effect of buoyancy-driven flows on the heat transfer characteristics of an Isochoric Thermal Energy Storage system is studied computationally. The storage fluid is molten elemental sulfur which has promising cost benefits. For this study, the storage fluid is stored in horizontal storage tubes. A computational model was developed to study the effect of buoyancy-driven flow and natural convection heat transfer on the charge/discharge times. The computational model is developed using an unsteady Finite Volume Method to model the transient heat transfer from the constant-temperature tube wall to the storage fluid. The results of this study show that the heat transfer process in Isochoric thermal energy storage system is dominated by natural convection and the buoyancy-driven flow reduces the charge time of the storage tube by 72–93%.


2015 ◽  
Vol 137 (4) ◽  
Author(s):  
Iñigo Ortega-Fernández ◽  
Javier Rodríguez-Aseguinolaza ◽  
Antoni Gil ◽  
Abdessamad Faik ◽  
Bruno D’Aguanno

Slag is one of the main waste materials of the iron and steel manufacturing. Every year about 20 × 106 tons of slag are generated in the U.S. and 43.5 × 106 tons in Europe. The valorization of this by-product as heat storage material in thermal energy storage (TES) systems has numerous advantages which include the possibility to extend the working temperature range up to 1000 °C, the reduction of the system cost, and at the same time, the decrease of the quantity of waste in the iron and steel industry. In this paper, two different electric arc furnace (EAF) slags from two companies located in the Basque Country (Spain) are studied. Their thermal stability and compatibility in direct contact with the most common heat transfer fluids (HTFs) used in the concentrated solar power (CSP) plants are analyzed. The experiments have been designed in order to cover a wide range of temperature up to the maximum operation temperature of 1000 °C corresponding to the future generation of CSP plants. In particular, three different fluids have been studied: synthetic oil (Syltherm 800®) at 400 °C, molten salt (Solar Salt) at 500 °C, and air at 1000 °C. In addition, a complete characterization of the studied slags and fluids used in the experiments is presented showing the behavior of these materials after 500 hr laboratory-tests.


2007 ◽  
Vol 130 (1) ◽  
Author(s):  
Doerte Laing ◽  
Wolf-Dieter Steinmann ◽  
Michael Fiß ◽  
Rainer Tamme ◽  
Thomas Brand ◽  
...  

Cost-effective integrated storage systems are important components for the accelerated market penetration of solarthermal power plants. Besides extended utilization of the power block, the main benefits of storage systems are improved efficiency of components, and facilitated integration into the electrical grids. For parabolic trough power plants using synthetic oil as the heat transfer medium, the application of solid media sensible heat storage is an attractive option in terms of investment and maintenance costs. For commercial oil trough technology, a solid media sensible heat storage system was developed and tested. One focus of the project was the cost reduction of the heat exchanger; the second focus lies in the energetic and exergetic analysis of modular storage operation concepts, including a cost assessment of these concepts. The results show that technically there are various interesting ways to improve storage performance. However, these efforts do not improve the economical aspect. Therefore, the tube register with straight parallel tubes without additional structures to enhance heat transfer has been identified as the best option concerning manufacturing aspects and investment costs. The results of the energetic and exergetic analysis of modular storage integration and operation concepts show a significant potential for economic optimization. An increase of more than 100% in storage capacity or a reduction of more than a factor of 2 in storage size and therefore investment cost for the storage system was calculated. A complete economical analysis, including the additional costs for this concept on the solar field piping and control, still has to be performed.


1979 ◽  
Vol 101 (3) ◽  
pp. 507-510 ◽  
Author(s):  
Ali Montakhab

Convective heating or cooling of granular solids or porous media is of interest in the design of thermal energy storage systems. The solutions to the energy initial boundary value problems governing convective heat transfer between a fixed bed of granular solids and a steady flow of heating or cooling fluid are presented. The storage system is considered to be initially in thermal equilibrium at a uniform temperature, a step change in the inlet temperature of the working fluid is imposed, and the thermal response of the system predicted. The results are valid for gases and liquids when the temperature gradient in the solid material is small and axial conduction effect is negligible in comparison with the convective heat transfer. Unlike the previously available solutions to this problem, the results presented are in closed form. This greatly simplifies evaluation and design of thermal energy storage systems of this general type.


Sign in / Sign up

Export Citation Format

Share Document