high storage
Recently Published Documents


TOTAL DOCUMENTS

239
(FIVE YEARS 84)

H-INDEX

26
(FIVE YEARS 7)

Batteries ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 4
Author(s):  
Shofirul Sholikhatun Nisa ◽  
Mintarsih Rahmawati ◽  
Cornelius Satria Yudha ◽  
Hanida Nilasary ◽  
Hartoto Nursukatmo ◽  
...  

Li-ion batteries as a support for future transportation have the advantages of high storage capacity, a long life cycle, and the fact that they are less dangerous than current battery materials. Li-ion battery components, especially the cathode, are the intercalation places for lithium, which plays an important role in battery performance. This study aims to obtain the LiNixMnyCozO2 (NMC) cathode material using a simple flash coprecipitation method. As precipitation agents and pH regulators, oxalic acid and ammonia are widely available and inexpensive. The composition of the NMC mole ratio was varied, with values of 333, 424, 442, 523, 532, 622, and 811. As a comprehensive study of NMC, lithium transition-metal oxide (LMO, LCO, and LNO) is also provided. The crystal structure, functional groups, morphology, elemental composition and material behavior of the particles were all investigated during the heating process. The galvanostatic charge–discharge analysis was tested with cylindrical cells and using mesocarbon microbeads/graphite as the anode. Cells were tested at 2.7–4.25 V at 0.5 C. Based on the analysis results, NMC with a mole ratio of 622 showed the best characteristicd and electrochemical performance. After 100 cycles, the discharged capacity reaches 153.60 mAh/g with 70.9% capacity retention.


2022 ◽  
Vol 2146 (1) ◽  
pp. 012036
Author(s):  
Yungui Chen ◽  
Liwei Tian ◽  
Lei Yang ◽  
Longqing Zhang

Abstract With the development of Internet technology, with the continuous increase of data volume, it has become more and more difficult to maintain the traditional centralized data storage method. Data is easy to copy, difficult to share, high storage costs, and low data usage efficiency. Further trigger the demand for more efficient data storage technology. This article aims to study the application of blockchain technology in the data security storage and sharing system. On the basis of analyzing the problems of data sharing and cryptography, the functional modules of the data security storage and sharing system are designed. Encryption uses public key encryption algorithm to ensure encryption performance. The simulation experiment results show that the system is effective for file sharing, and the average generation time of the algorithm in this paper is within the controllable range.


Author(s):  
Yuejia Li ◽  
Wei Pan ◽  
Fenghua Zhang ◽  
Jinsong Leng

Shape memory polymers (SMPs) are smart materials that can be programmed to change shape under external stimuli, whereas the low storage modulus limit the application of them. Herein, carbon fabric (CF) reinforced shape memory polyimide composites (SMPICs) with high storage modulus were manufactured via hot pressing molding process. Firstly, we synthesized one kind of thermoplastic shape memory polyimide (SMPI) with glass transition temperature of 205°C by the two-step high-temperature solution polycondensation. In addition, the triamine was added in the SMPI system as a crosslinking agent to form the thermosetting SMPI with different crosslinking degree. In order to improve the storage modulus of SMPI, the CFs with three layers were embedded in thermosetting SMPI matrix. The storage modulus of the obtained SMPICs was as high as 26 GPa. The glass transition temperature and thermal decomposition temperature of SMPICs were up to 213°C and 505°C, respectively. Moreover, the shape fixation rate and recovery rate of SMPICs were both more than 94%. These SMPICs with high storage modulus is of great significance, proving more application potential in many fields such as aerospace.


2021 ◽  
pp. 152808372110592
Author(s):  
Yijun Yao ◽  
Miao Wang ◽  
Hailiang Wu ◽  
Yanqin Shen

A water-soluble epoxy resin emulsion was synthesized by diethanolamine-assisted succinimide modified epoxy resin (DSEP) and used to reinforce the strand integrity of polyimide filament (PI). FTIR, XPS, and 1H NMR provide an evidence for the succinimide (SI) and diethanolamine (DEA) bonded onto the epoxy resin (EP) structure in the form of C-N-C. The DSEP emulsion shows high storage and dilution stability, with its particle size distribution and PDI of 118∼232 nm and 0.106∼0.638, respectively. Compared with DEA modified EP, DSEP exhibits better strand integrity for PI filament. The breaking strength of PI filament infiltrated by DSEP can reach 2.59 GPa, which is increased by 47.04% than that of PI filament, and is close to that of commercially available water-soluble polyimide resin (2.63 GPa). In addition, the fracture microstructure of PI filament further confirms that DSEP significantly reinforces the aggregation of PI filament. Importantly, there is no wire splitting phenomenon of DSEP reinforced PI filament after more than 200 times of friction. These benefit from the similar material groups of imide ring and benzene ring between DSEP and PI filament structure, as well as the strong hydrogen bonding interaction between them, as further confirmed by FTIR and SEM analysis.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xiaoming Yu ◽  
Yinghua Yang ◽  
Yanxia Ji ◽  
Lin Li

The deployable bridge based on scissor structures is one of the effective methods to quickly restore traffic after natural and man-made disasters. Scissor structures have the advantages of high storage rate, lightweight, and convenient storage and transportation. However, when scissor structures are used as load-bearing structures, their stiffness and bearing capacity are low. In this study, a three-dimensional deployable bridge based on the cable-strengthened scissor structures was proposed. In addition to rapid expansion, steel cables were used to strengthen scissor structures to improve the stiffness and bearing capacity. Besides, the static loading comparative tests on cable-strengthened scissor structures and traditional scissor structures (cable-free scissor structures) were performed. The results show that the stiffness of the cable-free scissor structure is small, the bending moment of members is large, and the stress distribution is uneven. The stiffness of cable-strengthened scissor structure is significantly improved; the bending moment of members is significantly reduced; and the stress distribution in the member section is more uniform. It is proved that cables can be used to improve the stiffness and load-bearing capacity of scissor structures without affecting the deployability.


2021 ◽  
Vol 11 (22) ◽  
pp. 10849
Author(s):  
Hana Mohd Zaini ◽  
Mohd Dona Bin Sintang ◽  
Jumardi Roslan ◽  
Suryani Saallah ◽  
Elisha Munsu ◽  
...  

Meat products are widely consumed worldwide and, as a result, they may be an exciting supplier of health benefits due to the need for better formulations, such as reduced fat and increased fibre in processed meats. This study was carried out to determine how the banana peel (BP) flour of Saba (Musa balbisiana) and Berangan (Musa acuminata) affect the functional properties and sensory acceptance of chicken sausage. Berangan BPs showed better water- and oil-holding capacity than Saba BP flour. Conversely, Saba BP flour exhibited better swelling power, but was less soluble than Berangan BP flour. Sausages containing high BPs, especially Saba banana, had a more rigid texture, a high storage modulus, and a darker colour. The ability to retain more water in Berangan peel positively affected the sausage’s textural and rheological properties. With 2%, chicken sausage received the highest sensory score, with Saba BP-containing sausage following closely behind. However, adding >2% BP of both varieties negatively affected the sausage texture and colour, resulting in reduced sensory acceptance. Thus, the BP from Saba and Berangan bananas showed promise as a potential value-adding ingredient in the formulation of functional meat products. In addition, it has potential health benefits, such as increased dietary fibre.


2021 ◽  
Author(s):  
◽  
Gareth Kear

<p>Non-pumped hydroelectricity-based energy storage in New Zealand has only limited potential to expand to meet projected growth in electricity demand. Seasonal variations of hydro inflows have also led to several 'dry-year' events over the last decade and dedicated fast-start 'peaker' capacity may also be required to support wind power as it approaches a 20% generation share. In this research, the New Zealand electricity industry has been surveyed in regard to the feasibility of reducing CO2-e emissions through the introduction of pumped hydroelectricity and utility-scale batteries by 2025. A desk-based review of the economic costs of these technologies has also been performed and their drivers and barriers critically assessed. Most respondents to the survey projected that peak power demand will continue to increase and this will result in new-build centralised (~150 MW) thermal reserve power sources. In New Zealand, the costs of pumped hydro and batteries are seen to be prohibitive to their introduction, even though they are almost universally assumed to be technically capable of providing renewables support and peak power adequacy. The perception of the poor economic viability of pumped hydro may, in part, be due to the relatively high capital cost estimate associated with the Manorburn-Onslow proposal (~NZ$3 billion). This research has shown, however, that smaller, 'more-internationally-representative' pumped hydro schemes, if available in NZ with low associated environmental impact, are cost-competitive with thermal peakers, especially diesel peakers. Conversely, utility-scale batteries have very high storage costs per kWh and are most likely to be used only for very high value applications where there is a strong technical advantage, such as the six-second fast instantaneous reserve.</p>


2021 ◽  
Author(s):  
◽  
Gareth Kear

<p>Non-pumped hydroelectricity-based energy storage in New Zealand has only limited potential to expand to meet projected growth in electricity demand. Seasonal variations of hydro inflows have also led to several 'dry-year' events over the last decade and dedicated fast-start 'peaker' capacity may also be required to support wind power as it approaches a 20% generation share. In this research, the New Zealand electricity industry has been surveyed in regard to the feasibility of reducing CO2-e emissions through the introduction of pumped hydroelectricity and utility-scale batteries by 2025. A desk-based review of the economic costs of these technologies has also been performed and their drivers and barriers critically assessed. Most respondents to the survey projected that peak power demand will continue to increase and this will result in new-build centralised (~150 MW) thermal reserve power sources. In New Zealand, the costs of pumped hydro and batteries are seen to be prohibitive to their introduction, even though they are almost universally assumed to be technically capable of providing renewables support and peak power adequacy. The perception of the poor economic viability of pumped hydro may, in part, be due to the relatively high capital cost estimate associated with the Manorburn-Onslow proposal (~NZ$3 billion). This research has shown, however, that smaller, 'more-internationally-representative' pumped hydro schemes, if available in NZ with low associated environmental impact, are cost-competitive with thermal peakers, especially diesel peakers. Conversely, utility-scale batteries have very high storage costs per kWh and are most likely to be used only for very high value applications where there is a strong technical advantage, such as the six-second fast instantaneous reserve.</p>


2021 ◽  
Vol 11 (21) ◽  
pp. 10500
Author(s):  
Volker Dreißigacker

Thermal energy storage systems open up high potentials for improvements in efficiency and flexibility for power plant and industrial applications. Transferring such technologies as basis for thermal management concepts in battery-electric vehicles allow alternative ways for heating the interior and avoid range limitations during cold seasons. The idea of such concepts is to generate heat electrically (power-to-heat) parallel of charging the battery, store it efficiently and discharge heat at a defined temperature level. The successful application of such concepts requires two central prerequisites: higher systemic storage densities compared to today’s battery-powered PTC heaters as well as high charging and discharging powers. A promising approach for both requirements is based on solids as thermal energy storage. These allow during discharging an efficient heat transfer to the gaseous heat transfer medium (air) due to a wide range of geometric configurations with high specific surfaces and during charging high storage densities due to use of ceramic materials suitable for high operating temperatures. However, for such concepts suitable heating systems with small dimensions are needed, allowing an efficient and homogeneous heat transfer to the solid with high charging powers and high heating temperatures. An appropriate technology for this purpose is based on resistance heating wires integrated inside the channel shaped solids. These promise high storage densities due to operating wire temperature of up to 1300 °C and an efficient heat transport via radiation. Such electrically heated storage systems have been known for a long time for stationary applications, e.g., domestic storage heaters, but are new for mobile applications. For evaluation such concepts with regard to systemic storage and power density as well as to identify preferred configurations extensive investigations are necessary. For this purpose, transient models for the relevant heat transport mechanisms and the whole storage system were created. In order to allow time-efficient simulations studies for such an electrical heated storage system, a novel correlation for the effective radiation coefficient based on the Fourier Number was derived. This coefficient includes radiation effects and thermal conduction resistances and enables through its dimensionless parameterization the investigation of the charging process for a wide range of geometrical configurations. Based on application-typical specifications and the derived Fourier based correlation, extensive variation studies regarding the storage system were performed and evaluated with respect to systemic storage densities, heating wire surface loads and dimensions. For a favored design option selected here, maximum systemic storage densities of 201 Wh/kg at maximum heating wire surface loads of 4.6 W/cm2 are achieved showing significant benefits compared to today’s battery powered PTC heaters. Additionally, for proofing and confirming the storage concept, a test rig was erected focusing experimental investigations on the charging process. For a first experimental setup-up including all relevant components, mean temperature-related deviations between the simulative and the experimental results of 4.1% were detected and storage temperatures of up to 870 °C were reached. The systematically performed results confirm the feasibility, high efficiency, thermodynamic synergies with geometric requirements during thermal discharging and the potential of the technology to reach higher systemic storage densities compared to current solutions.


Antibiotics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1319
Author(s):  
Anne-Marie Luther ◽  
Thu Quynh Nguyen ◽  
Jutta Verspohl ◽  
Dagmar Waberski

Antibiotic use in semen extenders for livestock may contribute to the development and spreading of multi-drug resistance. Antimicrobial control in semen doses for artificial insemination of pigs is indispensable due to the relatively high storage temperature (17 °C). The objectives of this study were first, to examine whether the antimicrobial capacity differs between antibiotic-free extenders and second, to determine whether an antimicrobial active extender provides the possibility to reduce antibiotics. Antibiotic-free semen extenders Beltsville Thawing Solution (BTS) and Androstar Premium were inoculated at 103 to 104 CFU/mL with four pure bacterial strains isolated from boar ejaculates or a mixture thereof, and then stored for 144 h at 17 °C. Bacterial counts after aerobic culture decreased in BTS up to one log level and decreased in Androstar Premium by 2 to 3.5 log levels (p < 0.05). In semen samples from nine boars stored in the inoculated Androstar Premium extender containing half of the standard concentration of gentamicin, bacteria counts were below 101 CFU/mL. Likewise, half of the standard dose of apramycin and ampicillin was fully antimicrobially active and sperm quality was maintained. In conclusion, semen extenders with intrinsic antimicrobial activity allow a reduction in antibiotic use in pig insemination.


Sign in / Sign up

Export Citation Format

Share Document