scholarly journals Galvanic Phase Coupling of Superconducting Flux Qubits

2021 ◽  
Vol 11 (23) ◽  
pp. 11309
Author(s):  
Mun Dae Kim

We investigate the galvanic coupling schemes of superconducting flux qubits. From the fundamental boundary conditions, we obtain the effective potential of the coupled system of two or three flux qubits to provide the exact Lagrangian of the system. While usually the two-qubit gate has been investigated approximately, in this study we derive the exact inductive coupling strength between two flux qubits coupled directly and coupled through a connecting central loop. We observe that the inductive coupling strength needs to be included exactly to satisfy the criteria of fault-tolerant quantum computing.

2016 ◽  
Vol 94 (22) ◽  
Author(s):  
Neill Lambert ◽  
Yuichiro Matsuzaki ◽  
Kosuke Kakuyanagi ◽  
Natsuko Ishida ◽  
Shiro Saito ◽  
...  

2001 ◽  
Vol 11 (08) ◽  
pp. 2245-2253
Author(s):  
WEN-XIN QIN

Applying invariant manifold theorem, we study the existence of generalized synchronization of a coupled system, with local systems being different sine circle maps. We specify a range of parameters for which the coupled system achieves generalized synchronization. We also investigate the relation between generalized synchronization, predictability and equivalence of dynamical systems. If the parameters are restricted in the specified range, then all the subsystems are topologically equivalent, and each subsystem is predictable from any other subsystem. Moreover, these subsystems are frequency locked even if the frequencies are greatly different in the absence of coupling. If the local systems are identical without coupling, then the widths of the phase-locked intervals of the coupled system are the same as those of the individual map and are independent of the coupling strength.


2016 ◽  
Vol 14 (07) ◽  
pp. 1650040
Author(s):  
Toshiyuki Fujii ◽  
Shigemasa Matsuo ◽  
Noriyuki Hatakenaka

We propose a fluxon-controlled quantum computer incorporated with three-qubit quantum error correction using special gate operations, i.e. joint-phase and SWAP gate operations, inherent in capacitively coupled superconducting flux qubits. The proposed quantum computer acts exactly like a knitting machine at home.


2003 ◽  
Vol 70 (3) ◽  
pp. 426-435 ◽  
Author(s):  
D. Galic ◽  
C. O. Horgan

Recent advances in smart structures technology have lead to a resurgence of interest in piezoelectricity, and in particular, in the solution of fundamental boundary value problems. In this paper, we develop an analytic solution to the axisymmetric problem of an infinitely long, radially polarized, radially orthotropic piezoelectric hollow circular cylinder rotating about its axis at constant angular velocity. The cylinder is subjected to uniform internal pressure, or a constant potential difference between its inner and outer surfaces, or both. An analytic solution to the governing equilibrium equations (a coupled system of second-order ordinary differential equations) is obtained. On application of the boundary conditions, the problem is reduced to solving a system of linear algebraic equations. The stress distribution in the tube is obtained numerically for a specific piezoceramic of technological interest, namely PZT-4. For the special problem of a uniformly rotating solid cylinder with traction-free surface and zero applied electric charge, explicit closed-form solutions are obtained. It is shown that for certain piezoelectric solids, stress singularities at the origin can occur analogous to those occurring in the purely mechanical problem for radially orthotropic elastic materials.


2020 ◽  
Vol 14 (5) ◽  
Author(s):  
Wan-Lu Song ◽  
Jia-Bin You ◽  
J.K. Xu ◽  
W.L. Yang ◽  
Jun-Hong An

2008 ◽  
Vol 86 (4) ◽  
pp. 533-540
Author(s):  
A G Fowler ◽  
W F Thompson ◽  
Z Yan ◽  
A M Stephens ◽  
B L.T. Plourde ◽  
...  

Constructing a fault-tolerant quantum computer is a daunting task. Given any design, it is possible to determine the maximum error rate of each type of component that can be tolerated while still permitting arbitrarily large-scale quantum computation. It is an under-appreciated fact that including an appropriately designed mechanism enabling long-range qubit coupling or transport substantially increases the maximum tolerable error rates of all components. With this thought in mind, we take the superconducting flux qubit coupling mechanism described in Plourde et al. (Phys. Rev. B, 70, 140501(R) (2004)) and extend it to allow approximately 500~MHz coupling of square flux qubits, 50 µm a side, at a distance of up to several mm. This mechanism is then used as the basis of two scalable architectures for flux qubits taking into account crosstalk and fault-tolerant considerations such as permitting a universal set of logical gates, parallelism, measurement and initialization, and data mobility.PACS No.: 03.67.Lx


2008 ◽  
Vol 78 (5) ◽  
Author(s):  
A. N. Omelyanchouk ◽  
S. N. Shevchenko ◽  
A. M. Zagoskin ◽  
E. Il’ichev ◽  
Franco Nori

Sign in / Sign up

Export Citation Format

Share Document