scholarly journals Reliability Modeling and Analysis of Multi-Degradation of Momentum Wheel Based on Copula Function

2021 ◽  
Vol 11 (23) ◽  
pp. 11563
Author(s):  
Yan-Feng Li ◽  
Ming Huang ◽  
Song Bai ◽  
Yuan Chen ◽  
Hong-Zhong Huang

The momentum wheel is a key component of the satellite attitude control system and has a direct impact on the reliability and overall life of the satellite. The momentum wheel has the characteristics of a high reliability, long life, and complex failure mechanics, which leads to expensive maintenance and a low reliability of the test sample. Therefore, it is challenge to implement an accelerated life test. The traditional life data statistical method has great difficulty in solving the reliability analysis of the momentum wheel. A reliability calculation method based on copula function for multi-degradation is proposed. Firstly, the key factors affecting the reliability of the momentum wheel are analyzed, and the lubricant residual quantity and current are selected as the degradation quantity. Secondly, the wiener process is used to model the degradation of a single degradation quantity, and the edge distribution function of the momentum wheel reliability is obtained. Considering that the correlation between multiple degradation quantities has a non-negligible influence on the reliability analysis result, the copula function is introduced to describe the correlation, and the edge distributions are fused to obtain the joint distribution function of the momentum wheel reliability.

Author(s):  
Nicolas Guy ◽  
Daniel Alazard ◽  
Christelle Cumer ◽  
Catherine Charbonnel

This article describes a general framework to generate linearized models of satellites with large flexible appendages. The obtained model is parameterized according to the tilt of flexible appendages and can be used to validate an attitude control system over a complete revolution of the appendage. Uncertainties on the characteristic parameters of each substructure can be easily considered by the proposed generic and systematic multibody modeling technique, leading to a minimal linear fractional transformation (LFT) model. The uncertainty block has a direct link with the physical parameters avoiding nonphysical parametric configurations. This approach is illustrated to analyze the attitude control system of a spacecraft fitted with a tiltable flexible solar panel. A very simple root locus allows the stability of the closed-loop system to be characterized for a complete revolution of the solar panel.


2012 ◽  
Vol 190-191 ◽  
pp. 880-885
Author(s):  
Lu Cao ◽  
Xiao Qian Chen ◽  
Yong Zhao

Attitude Control System(ACS); Terminal; Adaptive; Integral operator Abstract: Attitude Control System (ACS) with high performance, high precision, and high reliability is the kernel technology of the research of spacecraft, which directly affects the whole performance of spacecraft. Hence, a global fast integral operator Terminal adaptive sliding-mode controller is proposed to come true the high performance control. The theory of this controller is to introduce the limited time mechanics—Terminal mode to the sliding-mode control and introduce the integral operator to the sliding-mode plane, which can realize the convergence of spacecraft attitude in “limited time” in the condition of serious disturbance , in order to enhance the performance of fast response. At last, the simulation results demonstrate the high reliability and advantages of the control approach.


2020 ◽  
Vol 21 (4) ◽  
pp. 249-256
Author(s):  
A. I. Zavedeev

Different directions of creation high reliability integrate spacecraft control system are discussed on base of robust diagnostic models and division principle in parity space. Problems of synthesis spacecraft control system algorithms are examined with incomplete apriory and distorted current information, action of uncontrolled and random factors, information losses and equipment failures. The structure of onboard attitude control system is synthesized and control algorithms are chosen, which guarantee robust stability and failure stability in presence indignant factors and obstacles. An instrumental structure and operational modes of spacecraft attitude control system are described. Methods of dynamic research, computer technology and modeling particularities are indicated. Diagnostic and reconfiguration algorithms for onboard complex of connection, navigation, geodesy satellites and earth inspectoral satellite in prolonged space flight utilization are proposed. Testing procedure is contains two stage: discovering and eliminating faults. Given mathematical system model is researched by means of difference signals, which forms with arise at fault emergence. The failure character is established by deciding rules on base difference signals and measures to it eliminating are took. Questions of onboard spacecraft control system failure stable improving are discussed on base principle reconfiguration with apply to adaptive logic in testing and diagnostic algorithms. The mathematical system model is researching with implementation of analytic reserving. Difference signals are formed, which arise at fault appearance. The adaptive approach to development testing and diagnostic systems provide for realization of flexible logic of control system function to take into account factual onboard equipment state. Special attention is devote to problem influence liquid fuel reactive engine agility on spacecraft control attitude system dynamic characteristics and precision. The effectiveness of prepositional approaches and algorithms is confirmed by mathematical modeling results for several actual technical systems. Recommendations to their practical applications are given. 


Author(s):  
Shinya FUJITA ◽  
Yuji SATO ◽  
Toshinori KUWAHARA ◽  
Yuji SAKAMOTO ◽  
Yoshihiko SHIBUYA ◽  
...  

1980 ◽  
Author(s):  
F. FLOYD ◽  
C. MUCH ◽  
N. SMITH ◽  
J. VERNAU ◽  
J. WOODS

2020 ◽  
Vol 28 (10) ◽  
pp. 2192-2202
Author(s):  
Feng WANG ◽  
◽  
Shi-bo NIU ◽  
Cheng-fei YUE ◽  
Fan WU ◽  
...  

2021 ◽  
Vol 11 (14) ◽  
pp. 6549
Author(s):  
Hui Liu ◽  
Ming Zeng ◽  
Xiang Niu ◽  
Hongyan Huang ◽  
Daren Yu

The microthruster is the crucial device of the drag-free attitude control system, essential for the space-borne gravitational wave detection mission. The cusped field thruster (also called the High Efficiency Multistage Plasma Thruster) becomes one of the candidate thrusters for the mission due to its low complexity and potential long life over a wide range of thrust. However, the prescribed minimum of thrust and thrust noise are considerable obstacles to downscaling works on cusped field thrusters. This article reviews the development of the low power cusped field thruster at the Harbin Institute of Technology since 2012, including the design of prototypes, experimental investigations and simulation studies. Progress has been made on the downscaling of cusped field thrusters, and a new concept of microwave discharge cusped field thruster has been introduced.


Sign in / Sign up

Export Citation Format

Share Document