scholarly journals Design of a Mass Air Flow Sensor Employing Additive Manufacturing and Standard Airfoil Geometry

2021 ◽  
Vol 11 (24) ◽  
pp. 11579
Author(s):  
Dimitrios-Nikolaos Pagonis ◽  
Vasiliki Benaki ◽  
Grigoris Kaltsas ◽  
Antonios Pagonis

This work concerns the design, fabrication, and preliminary characterization of a novel sensor for determining the air intake of low and medium power internal combustion engines employed at various applications in the marine industry. The novelty of the presented sensor focuses on the fabrication process, which is based on additive manufacturing combined with PCB technology, and the design of the sensing elements housing geometry, which is derived through suitable CFD simulations and is based on standard airfoil geometry. The proposed process enables low-cost, fast fabrication, effective thermal isolation, and facile electrical interconnection to the corresponding circuitry of the sensor. For initial characterization purposes, the prototype device was integrated into a DIESEL engine testbed while a commercially available mass air flow sensor was employed as a reference; the proper functionality of the developed prototype has been validated. Key features of the proposed device are low-cost, fast on-site manufacturing of the device, robustness, and simplicity, suggesting numerous potential applications in marine engineering.

2002 ◽  
Vol 2 (5) ◽  
pp. 453-462 ◽  
Author(s):  
M. Dominguez ◽  
F.N. Masana ◽  
V. Jimenez ◽  
S. Bermejo ◽  
J. Amirola ◽  
...  
Keyword(s):  
Low Cost ◽  
Air Flow ◽  

2006 ◽  
Vol 129 (1) ◽  
pp. 32-40 ◽  
Author(s):  
Matthew A. Franchek ◽  
Patrick J. Buehler ◽  
Imad Makki

Presented is the detection, isolation, and estimation of faults that occur in the intake air path of internal combustion engines during steady state operation. The proposed diagnostic approach is based on a static air path model, which is adapted online such that the model output matches the measured output during steady state conditions. The resulting changes in the model coefficients create a vector whose magnitude and direction are used for fault detection and isolation. Fault estimation is realized by analyzing the residual between the actual sensor measurement and the output of the original (i.e., healthy) model. To identify the structure of the steady state air path model a process called system probing is developed. The proposed diagnostics algorithm is experimentally validated on the intake air path of a Ford 4.6L V-8 engine. The specific faults to be identified include two of the most problematic faults that degrade the performance of transient fueling controllers: bias in the mass air flow sensor and a leak in the intake manifold. The selected model inputs include throttle position and engine speed, and the output is the mass air flow sensor measurement.


2020 ◽  
Author(s):  
Adrian Misztuk

Internal combustion engines have to be supplied with adequate amounts of fuel and air. The required amount of fuel and air is determined by the engine controller to guarantee that the fuel reaching the cylinder is burned effectively and that the composition of exhaust gas meets standard requirements. The air supplied to an internal combustion engine has to be adequately filtered because impurities reaching the engine can accelerate the wear of engine components. The air intake system features a filtering partition which captures impurities and prevents them from reaching the engine. However, the filtering process decreases the rate at which cylinders are filled with fresh air, which can compromise engine performance. Therefore, effective solutions are needed to ensure that the flow of filtered air does not significantly decrease the volumetric efficiency of cylinders.  This study presents a design concept of a device for measuring pressure in the air intake system in front of and behind the filtering partition. The proposed device can be useful for measuring filter wear. A prototype of the proposed device was built and tested on several air filters. To eliminate throttle valve impacts, the device was tested in a compression ignition engine. The results of the conducted tests demonstrated that the device correctly measured air flow. The conducted measurements also revealed that the presence of impurities in the air filter induced differences in pressure in the air intake system in front of and behind the filtering partition. The maximum air flow resistance in a clogged filter could be even 100% higher than in a brand new filter. W niniejszej pracy przedstawiono koncepcję stanowiska umożliwiającego prowadzenie pomiarów ciśnienia panującego w kanale dolotowym silnika przed i za przegrodą filtracyjną powietrza, które mogą być przydatne przy określaniu stopnia jej zużycia. Dodatkowo zbudowano prototyp urządzenia i w celu weryfikacji poprawności jego działania przeprowadzono za jego pomocą badania przykładowych filtrów. Badania wykonano z użyciem silnika spalinowego o zapłonie samoczynnym. Wyniki pomiarów potwierdzają działanie urządzenia oraz obrazują zależności pomiędzy filtrami o różnym stopniu zużycia. Okazuje się, że maksymalny opór przepływu zużytego wkładu filtracyjnego może być nawet o ok. 100% większy niż w przypadku nowego wkładu filtracyjnego.


Author(s):  
Jesús Calderón ◽  
Carlos Rincón ◽  
Bray Agreda ◽  
Sebastián Calero ◽  
Manuel Bornas ◽  
...  

Mechanical ventilation systems, which are used for breathing support when a person is not able to do it by their own, requires a device for measuring the air flow to the patient in order to monitoring and a assure the magnitude establish by a medical staff. Flow sensors are the conventional devices used for the air flow measuring; however, there were not available in Peru, because of the international demand during COVID-19 pandemic. In this sense, a novel air flow sensor based on orifice plate and an intelligent transducer stage were developed as an integrated design. Advanced methodologies in simulations and experiments using specially designed equipment for this application were carried out. The obtained data was used for a mathematical characterization and dimensions validation of the integrated design. The device was tested in its real working conditions, it was implemented in a breathing circuit connected to a low-cost mechanical ventilation system based on cams. Results indicate that the designed air flow sensor/transducer is a low-cost complete medical device for mechanical ventilators able to provide satisfactorily all the ventilation parameters air flow, pressure and volume over time by measuring the air flow and calculating the others. Furthermore, this device provides directly a filtered equivalent electrical signal for a display or a computer.


2021 ◽  
Vol 2 ◽  
pp. 33-42
Author(s):  
Luis Lopera ◽  
Romina Rodriguez ◽  
Mostafa Yakout ◽  
Mo Elbestawi ◽  
Ali Emadi

Author(s):  
Chanun Suwanpreecha ◽  
Phanuphak Seensattayawong ◽  
Vorawat Vadhanakovint ◽  
Anchalee Manonukul

Author(s):  
Salman Ahmad ◽  
Muhammad Shakeel ◽  
Nadeem Iqbal ◽  
Mohsin Amin ◽  
Khalid Rahman

Sign in / Sign up

Export Citation Format

Share Document