scholarly journals Current and Potential Applications of Additive Manufacturing for Power Electronics

2021 ◽  
Vol 2 ◽  
pp. 33-42
Author(s):  
Luis Lopera ◽  
Romina Rodriguez ◽  
Mostafa Yakout ◽  
Mo Elbestawi ◽  
Ali Emadi
Author(s):  
Arivazhagan Pugalendhi ◽  
Rajesh Ranganathan

Additive Manufacturing (AM) capabilities in terms of product customization, manufacture of complex shape, minimal time, and low volume production those are very well suited for medical implants and biological models. AM technology permits the fabrication of physical object based on the 3D CAD model through layer by layer manufacturing method. AM use Magnetic Resonance Image (MRI), Computed Tomography (CT), and 3D scanning images and these data are converted into surface tessellation language (STL) file for fabrication. The applications of AM in ophthalmology includes diagnosis and treatment planning, customized prosthesis, implants, surgical practice/simulation, pre-operative surgical planning, fabrication of assistive tools, surgical tools, and instruments. In this article, development of AM technology in ophthalmology and its potential applications is reviewed. The aim of this study is nurturing an awareness of the engineers and ophthalmologists to enhance the ophthalmic devices and instruments. Here some of the 3D printed case examples of functional prototype and concept prototypes are carried out to understand the capabilities of this technology. This research paper explores the possibility of AM technology that can be successfully executed in the ophthalmology field for developing innovative products. This novel technique is used toward improving the quality of treatment and surgical skills by customization and pre-operative treatment planning which are more promising factors.


2021 ◽  
Author(s):  
Charles Lents ◽  
G.Q. Lu ◽  
Michael Fish ◽  
Peter DeBock

Polymers ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1263 ◽  
Author(s):  
June-Yo Chen ◽  
Joanne Hwang ◽  
Wai-Sam Ao-Ieong ◽  
Yung-Che Lin ◽  
Yi-Kong Hsieh ◽  
...  

As acrylated polymers become more widely used in additive manufacturing, their potential applications toward biomedicine also raise the demand for biodegradable, photocurable polymeric materials. Polycaprolactone diacrylate (PCLDA) and poly(ethylene glycol) diacrylate (PEGDA) are two popular choices of materials for stereolithography (SLA) and digital light processing additive manufacturing (DLP-AM), and have been applied to many biomedical related research. However, both materials are known to degrade at a relatively low rate in vivo, limiting their applications in biomedical engineering. In this work, biodegradable, photocurable copolymers are introduced by copolymerizing PCLDA and/or PEGDA with poly(glycerol sebacate) acrylate (PGSA) to form a network polymer. Two main factors are discussed: the effect of degree of acrylation in PGSA and the weight ratio between the prepolymers toward the mechanical and degradation properties. It is found that by blending prepolymers with various degree of acrylation and at various weight ratios, the viscosity of the prepolymers remains stable, and are even more 3D printable than pure substances. The formation of various copolymers yielded a database with selectable Young’s moduli between 0.67–10.54 MPa, and the overall degradation rate was significantly higher than pure substance. In addition, it is shown that copolymers fabricated by DLP-AM fabrication presents higher mechanical strength than those fabricated via direct UV exposure. With the tunable mechanical and degradation properties, the photocurable, biodegradable copolymers are expected to enable a wider application of additive manufacturing toward tissue engineering.


2021 ◽  
Vol 2021 ◽  
pp. 1-20 ◽  
Author(s):  
Dhinakaran Veeman ◽  
M. Swapna Sai ◽  
P. Sureshkumar ◽  
T. Jagadeesha ◽  
L. Natrayan ◽  
...  

As a technique of producing fabric engineering scaffolds, three-dimensional (3D) printing has tremendous possibilities. 3D printing applications are restricted to a wide range of biomaterials in the field of regenerative medicine and tissue engineering. Due to their biocompatibility, bioactiveness, and biodegradability, biopolymers such as collagen, alginate, silk fibroin, chitosan, alginate, cellulose, and starch are used in a variety of fields, including the food, biomedical, regeneration, agriculture, packaging, and pharmaceutical industries. The benefits of producing 3D-printed scaffolds are many, including the capacity to produce complicated geometries, porosity, and multicell coculture and to take growth factors into account. In particular, the additional production of biopolymers offers new options to produce 3D structures and materials with specialised patterns and properties. In the realm of tissue engineering and regenerative medicine (TERM), important progress has been accomplished; now, several state-of-the-art techniques are used to produce porous scaffolds for organ or tissue regeneration to be suited for tissue technology. Natural biopolymeric materials are often better suited for designing and manufacturing healing equipment than temporary implants and tissue regeneration materials owing to its appropriate properties and biocompatibility. The review focuses on the additive manufacturing of biopolymers with significant changes, advancements, trends, and developments in regenerative medicine and tissue engineering with potential applications.


Author(s):  
Brandon Bethers ◽  
Yang Yang

Abstract Cuttlebone, the internal shell structure of a cuttlefish, presents a unique labyrinthian wall-septa design that promotes high energy absorption, porosity, and damage tolerance. This structure offers us an inspiration for the design of lightweight and strong structures for potential applications in mechanical, aerospace and biomedical engineering. However, the complexity of the cuttlebones structural design makes its fabrication by traditional manufacturing techniques not feasible. The advances in additive manufacturing (3D printing) make highly complex structures like cuttlebone possible to manufacture. In this work, the authors sought to establish comparative data between cuttlebone structures and some common support structures used in additive manufacturing. The structures compared to cuttlebone in this work include the cubic, honeycomb and triangular support structures. This was accomplished by using CAD modeling and simulation software. This study found that the cuttlefish structures had higher average stress values than the others but similar average strain values. This leads to a higher modulus of elasticity for the cuttlebone structures. The data suggests that further research into cuttlebone structures could produce future designs that improve upon the current well-established additive manufacturing support structures. Further study will be performed for the 3D printing of cuttlebone inspired structures by using various types of materials, such as soft and rigid polymers, functional ceramics, composites, and metals.


2017 ◽  
Vol 53 (6) ◽  
pp. 5709-5714 ◽  
Author(s):  
Yi Yan ◽  
Jim Moss ◽  
Khai D. T. Ngo ◽  
Yunhui Mei ◽  
Guo-Quan Lu

2021 ◽  
Vol 11 (18) ◽  
pp. 8778
Author(s):  
Antoniya Toncheva ◽  
Loïc Brison ◽  
Philippe Dubois ◽  
Fouad Laoutid

Natural and synthetic rubber is gaining increased interest in various industrial applications and daily life sectors (automotive industry, acoustic and electrical isolators, adhesives, impermeable surfaces, and others) due to its remarkable physicomechanical properties, excellent durability, and abrasive resistance. These great characteristics are accompanied by some recycling difficulties of the final products, particularly originated from the tire waste rubber industry. In this study, recycled tire rubber was incorporated in polymer matrices using selective laser sintering as 3D printing technology. Two polymers were used-polyamide and thermoplastic polyurethane, for their rigid and elastomeric properties, respectively. Polymer composites containing various tire powder amounts, up to 40 wt.%, were prepared by physical blending. The final materials’ morphological characteristics, mechanical properties, and thermal stability were evaluated. The proposed ambitious additive manufacturing approach looked over also some of the major aspects to be considered during the 3D printing procedure. In addition, examples of printed prototypes with potential applications were also proposed revealing the potential of the recycled tire rubber-loaded composites.


2014 ◽  
Vol 939 ◽  
pp. 635-643 ◽  
Author(s):  
Steve Hsueh Ming Wang ◽  
Yan Rui Qu ◽  
Chao Chang Arthur Chen ◽  
Shu Ping Chang

A number of materials have been used for Medical Additive Manufacturing (MAM), such as stem cells, biopolymers, metals, bio-ceramics, and bio-glass. Recent research includes potential applications in the replacement of human tissues, organs, and bones by using the bio-printing technology. MAM also has been applied to build up a dummy prototype to simulate a complicated operation process before surgery. Sustainable design of MAM has a need for the development of the system to be environmentally, economically, and socially sustainable for its life cycle. This paper surveys the scope of the sustainability of MAM in terms of these three categories. The methodology and tools for assessment of the sustainable development of MAM processes are discussed. This paper analyzes several examples of the application of additive manufacturing in medicine which have been published in recent journals. There are four critical areas of the design-centered system integration for sustainable development in this survey. The investigations for MAM processes including (1) the materials, (2) the precision of the advanced machine tools and tissues, (3) the mechanisms of the processes, and (4) the mechanical properties of the implanted components after MAM. The results can be used as a reference for the assessment of future sustainable Design-Centered Integration for MAM.


Sign in / Sign up

Export Citation Format

Share Document