scholarly journals Integrative Assessment of Sediments Affected by CO2 Enrichment: A Case Study in the Bay of Santos—SP, Brazil

2021 ◽  
Vol 11 (24) ◽  
pp. 11603
Author(s):  
Marina Cunha Passarelli ◽  
Estefanía Bonnail ◽  
Augusto Cesar ◽  
T. Ángel DelValls ◽  
Inmaculada Riba

CO2 enrichment in the marine environment caused by leakages from carbon capture and storage technologies may occur over operational procedures. An integrated approach using weight-of-evidence was applied to assess the environmental risk associated with the acidification caused by CO2 enrichment in coastal sediments from Santos (Brazil). Chemical analyses (metal(loid)s and organic contaminant (e.g., hydrocarbons), toxicity tests (amphipods mortality, sea-urchin embryo-larval development) and macro-benthic community structure alteration assessment were performed with different acidified scenarios (pH 8.0–6.0) for two stations with different contamination degrees. These lines of evidence were statistically analyzed and integrated (multivariate analysis and ANOVA). Results of toxicity showed significant chronic effects starting at pH 7.0 while acute effects were observed starting at pH 6.5. The macro-benthic community integrity showed significant differences for all treatments at the Piaçaguera channel station, considered to be moderately contaminated. Results from the multivariate analysis correlated toxic effects and increase in the mobility of some elements with acidification. Also, the biological indexes were correlated with concentrations of dissolved Zn in seawater. The pH of 6.0 was extremely toxic for marine life due to its high acidification and metal bioavailability. The approach herein identified and discriminated the origin of the degradation caused by the acidification related to the enrichment of CO2.

2020 ◽  
Author(s):  
Zoe Cumberpatch ◽  
Emma Finch ◽  
Ian Kane ◽  
Christopher Jackson ◽  
David Hodgson ◽  
...  

<p>Complicated structural-stratigraphic traps at the salt-sediment interface have historically hosted large hydrocarbon discoveries. Understanding sediment-routing around active salt bodies, is now vital for carbon capture and storage projects due to salt being a ‘near-perfect’ seal. Despite advances in subsurface visualisation, the salt-sediment interface remains difficult to image due to steep-bedding, bed-thickness changes and lithological contrasts. Outcropping examples provide depositional facies understanding, but are limited, largely due to the dissolution of associated halites. Studied analogues represent specific sedimentation rates and salt rise rates, which are difficult to accurately constrain and decipher.</p><p>Discrete Element Modelling (DEM) provides an efficient and inexpensive tool to analyse how depositional architectures around salt structures vary with sedimentation rate. Model input parameters are taken from the Bakio diapir, Basque Cantabrian Basin and the Pierce diapirs, eastern Central Graben and their adjacent, halokinetically influenced stratigraphic successions.</p><p>Six experiments were run, lasting for a total of 4.6 Myr. After a 2.2 Myr calibration period sediment was added to the model over three 800,000 year stages: 1) 2.2-3 Myr, 2) 3-3.8 Myr 3) 3.8-4.6 Myr. Sedimentation rate was varied to study the effects of sedimentation on mini-basin individualisation and extent of halokinetic modulation. The six experiments represent: no sedimentation, slow, intermediate and fast sediment input, increasing sedimentation and decreasing sedimentation. Outputs are validated by comparison to subsurface and outcropping examples globally.</p><p>Results show that: <br>1) Diapir growth is increased with some sedimentation, compared to no sedimentation, in agreement with models of passive diapirism by sediment loading, however growth is inhibited by increasing sedimentation rate.<br>2) Salt withdrawal mini-basins of 4-5 diapir-widths are formed and are controlled by the width of the diapir; outside of this, the overburden is undeformed. <br>3) Strata, at least initially, onlap and thin towards the topographic high created by the diapir.<br>4) Slow aggradation results in rotation of onlaps and sedimentation being restricted to mini-basins, making individualisation more probable, while sedimentation on the diapir roof eventually occurs in all other experiments.</p><p>5) Under high sedimentation rates, halokinetic influences on stratigraphy are ‘buried’ quicker, which could make the upper part of the syn-kinematic sequence difficult to decipher from the post-kinematic sequence.</p><p>The increasing sedimentation scenario simulates progradation, and is integrated with findings from the halokinetically-influenced successions around the Bakio (N.Spain) and Pierce (UK North Sea) diapirs. At Bakio, stratigraphy deposited above the diapir was removed by Pyrenean inversion. Incorporating outcrop-based sedimentary facies analysis with numerical modelling indicates that deposits experience facies changes towards stratigraphic pinch outs, mass failures could be common closest to diapirs and allows for the development of ‘zones’ of variably severe halokinetic influence. Combining Pierce core data and model results highlights a trade-off between reservoir quality and stratigraphic trap integrity that may aid development of hydrocarbon fields and carbon capture and storage sites in salt-bearing sedimentary basins.</p><p>Our innovative, iterative, integrated approach is capable of improving understanding of the variables influencing sediment-routing and stratigraphic trap configuration around extensional-passive diapirs, and can be applied to a multitude of depositional settings.</p>


Author(s):  
Wolfram Buss ◽  
Kirsty Yeates ◽  
Eelco J Rohling ◽  
Justin Borevitz

Abstract One of society’s greatest challenges is sequestering vast amounts of carbon to avoid dangerous climate change without driving competition for land and resources. Here we assess the potential of an integrated approach based on enhancement of natural biogeochemical cycles in agro-ecosystems that stimulate carbon capture and storage while increasing resilience and long-term productivity. The method integrates plant photosynthesis in the form of (cover) crops and agroforestry which drives carbon capture. Belowground plant-carbon is efficiently stored as stable soil organic carbon (SOC). Aboveground crop and tree residues are pyrolyzed into biochar, which is applied to the soil reducing carbon release through decomposition. Enhanced weathering of basalt powder worked into the soil further captures and stores carbon, while releasing nutrients and alkalinity. The integrated system is regenerative, through enhanced virtuous cycles that lead to improved plant capture, biomass storage and crop yield, the prerequisites for large-scale carbon sequestration along with food security.


2019 ◽  
Vol 27 (3) ◽  
pp. 333-345
Author(s):  
Ángel DelValls ◽  
Lorena da Silva Souza ◽  
Alessandra Aloise de Seabra ◽  
Camilo Dias Seabra Pereira ◽  
Estefanía Bonnail ◽  
...  

Efforts to stem global change include the application of new technological developments that aim to reduce atmospheric carbon dioxide (CO2) through the carbon capture and storage (CCS) of this greenhouse gas in stable geological structures. In this paper, we assess the potential risks related to the application of CCS technology and the acidification of aquatic ecosystems through CO2 enrichment. We use the multiple lines of evidence approach (LOEs) to characterize the effects of the acidification with contamination in aquatic sediments. We highlight and discuss the effects of acidification on the LOEs including contamination and mobility of contaminants in sediments, toxicity, macrobenthic community structure, in situ effects, and bioaccumulation–biomagnification processes. We further assess the results of acidification on the toxicity of organic contaminants such as antibiotics or illicit drugs like the freebase form of cocaine (crack). The main goal of using the LOE approach is to distinguish between adverse effects that are associated with contaminants and those related to acidification by enrichment of CO2 as a result of CCS technology. Previous assessments were not designed or conducted to incorporate an integrative point of view, nor did they employ a weight of evidence approach (WOE) in risk characterization and management of CCS operations and other situations related to acidification by enrichment of CO2 in the aquatic ecosystem. Based on the findings of this review, the WOE can identify the effects of the acidification on the different LOEs used for sediment quality: contaminant mobility, the adverse effects in organism under laboratory and field conditions, and the bioaccumulation–biomagnification of contaminants. The main strength in using the WOE is the ability of this method to discriminate between LOE responses associated with contamination by different organic and inorganic substances from those related to CO2 acidification itself. The WOE will significantly improve the risk assessment in areas affected by potential leakages of CO2 during CCS operations.


2020 ◽  
Vol 10 (2) ◽  
pp. 622
Author(s):  
Miguel A. Morales Mora ◽  
Rene D. Martínez Bravo ◽  
Carole Farell Baril ◽  
Mónica Fuentes Hernández ◽  
Sergio A. Martínez Delgadillo

In the life cycle assessment (LCA) method, it is not possible to carry out an integrated sustainability analysis because the quantification of the biophysical capacity of the ecosystems to supply ecosystem services is not taken into account. This paper considers a methodological proposal connecting the flow demand of a process or system product from the technosphere and the feasibility of the ecosystem to supply based on the sink capacity. The ecosystem metabolism as an analytical framework and data from a case study of an LCA of combined heat and power (CHP) plant with and without post-combustion carbon capture (PCC) technology in Mexico were applied. Three scenarios, including water and energy depletion and climate change impact, are presented to show the types of results obtained when the process effect of operation is scaled to one year. The impact of the water–energy–carbon nexus over the natural infrastructure or ecological fund in LCA is analyzed. Further, the feasibility of the biomass energy with carbon capture and storage (BECCS) from this result for Mexico is discussed. On the supply side, in the three different scenarios, the CHP plant requires between 323.4 and 516 ha to supply the required oil as stock flow and 46–134 ha to supply the required freshwater. On the sink side, 52–5,096,511 ha is necessary to sequester the total CO2 emissions. Overall, the CHP plant generates 1.9–28.8 MW/ha of electricity to fulfill its function. The CHP with PCC is the option with fewer ecosystem services required.


Author(s):  
Wolfram Buss ◽  
Kirsty Yeates ◽  
Eelco Rohling ◽  
Justin Borevitz

One of society’s greatest challenges is sequestering vast amounts of carbon to avoid dangerous climate change without driving competition for land and resources. Here we assess the potential of an integrated approach based on enhancement of natural biogeochemical cycles in agro-ecosystems that stimulate carbon capture and storage while increasing resilience and long-term productivity. The method integrates plant photosynthesis in the form of (cover) crops and agroforestry which drives carbon capture. Belowground plant-carbon is efficiently stored as stable soil organic carbon (SOC). Aboveground crop and tree residues are pyrolyzed into biochar, which is applied to the soil reducing carbon release through decomposition. Enhanced weathering of basalt powder worked into the soil further captures and stores carbon, while releasing nutrients and alkalinity. The integrated system is regenerative, through enhanced virtuous cycles that lead to improved plant capture, biomass storage and crop yield, the prerequisites for large-scale carbon sequestration along with food security.


Sign in / Sign up

Export Citation Format

Share Document