toxicity tests
Recently Published Documents


TOTAL DOCUMENTS

1748
(FIVE YEARS 349)

H-INDEX

61
(FIVE YEARS 5)

Toxins ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 60
Author(s):  
Timotej Turk Dermastia ◽  
Sonia Dall’Ara ◽  
Jožica Dolenc ◽  
Patricija Mozetič

Diatoms of the genus Pseudo-nitzschia H.Peragallo are known to produce domoic acid (DA), a toxin involved in amnesic shellfish poisoning (ASP). Strains of the same species are often classified as both toxic and nontoxic, and it is largely unknown whether this difference is also genetic. In the Northern Adriatic Sea, there are virtually no cases of ASP, but DA occasionally occurs in shellfish samples. So far, three species—P. delicatissima (Cleve) Heiden, P. multistriata (H. Takano) H. Takano, and P. calliantha Lundholm, Moestrup, & Hasle—have been identified as producers of DA in the Adriatic Sea. By means of enzme-linked immunosorbent assay (ELISA), high-performance liquid chromatography with UV and visible spectrum detection (HPLC-UV/VIS), and liquid chromatography with tandem mass spectrometry (LC-MS/MS), we reconfirmed the presence of DA in P. multistriata and P. delicatissima and detect for the first time in the Adriatic Sea DA in P. galaxiae Lundholm, & Moestrup. Furthermore, we attempted to answer the question of the distribution of DA production among Pseudo-nitzschia species and strains by sequencing the internal transcribed spacer (ITS) phylogenetic marker and the dabA DA biosynthesis gene and coupling this with toxicity data. Results show that all subclades of the Pseudo-nitzschia genus contain toxic species and that toxicity appears to be strain dependent, often with geographic partitioning. Amplification of dabA was successful only in toxic strains of P. multistriata and the presence of the genetic architecture for DA production in non-toxic strains was thus not confirmed.


2022 ◽  
Vol 2 (1) ◽  
Author(s):  
Todd Gouin ◽  
Robert Ellis-Hutchings ◽  
Leah M. Thornton Hampton ◽  
Christine L. Lemieux ◽  
Stephanie L. Wright

AbstractConcern regarding the human health implications that exposure to nano- and microplastic particles (NMPs) potentially represents is increasing. While there have been several years of research reporting on the ecotoxicological effects of NMPs, human health toxicology studies have only recently emerged. The available human health hazard data are thus limited, with potential concern regarding the relevance and reliability for understanding the potential human health implications. In this study we develop and apply a NMP toxicity screening assessment tool (NMP-TSAT) for evaluating human health effects studies against a suite of quality assurance and quality control (QA/QC) criteria for both in vivo and in vitro studies. A total of 74 studies representing either inhalation or oral exposure pathways were identified and evaluated. Assessment categories include particle characterization, experimental design, and applicability for risk assessment; with critical and non-critical criteria organized to allow screening and prioritization. It is observed that the majority of studies evaluated using the NMP-TSAT have been performed on monodisperse particles, predominately spheres (≈60%), consisting of polystyrene (≈46%). The majority of studies have tested particles < 5 μm, with a minimal particle size of 10 nm and a maximum particle size of about 200 μm. The total assessment score (TAS) possible for in vivo studies is 52, whereas for in vitro studies it is 46, which is based on receiving a maximum score of 2 against 26 and 23 criteria, respectively. The evaluated TAS ranged from between 12 and 44 and 16–34, for in vivo and in vitro studies, respectively. Given the challenges associated with prioritizing studies based on ranking them according to their TAS we propose a Tiered approach, whereby studies are initially screened based on how they score against various critical criteria, which have been defined for their relevance for assessing the hazards and risks for human health. In this instance, studies that score a minimum of ‘1’ against each of the critical criteria, regardless of how they rank according to their TAS, are prioritized as part of a Tier 1 screening and prioritization phase, which would then be followed by an expert evaluation, representing a Tier 2 level of assessment. Using this approach we identify 10 oral ingestion and 2 inhalation studies that score at least 1 against all critical criteria. Lastly, several key observations for strengthening future effects studies are identified, these include a need for the generation and access to standard reference materials representative of human exposure to NMPs for use in toxicity test systems and/or the improved characterization and verification of test particle characteristics, and the adoption of study design guidance, such as recommended by OECD, when conducting either in vivo inhalation or oral ingestion toxicity tests.


Author(s):  
Joseph Soto-Verjel ◽  
Aymer Y. Maturana ◽  
Salvador E. Villamizar

Abstract This article had the one and only objective of consolidating the couplings of advanced oxidation processes and biological in the decontamination of wastewater with pesticide content reported in the Scopus and Web of Science databases, through a critical analysis of which have been the most used, what methodologies have been implemented to develop them, identify the objectives of each work, determine the success of the research and where the main niches of knowledge are, which can lead to the generation of new scientific knowledge as well as future trends. A co-occurrence analysis was carried out through the VOSViewer software, to determine the most associated key words with the treatment configurations described above. Fenton and Photo-Fenton processes, heterogeneous photocatalysis TiO2/UV, electrocatalysis, ozonization and a particular case of hydrodynamic-ozone cavitation as main advanced oxidation processes, together with advanced biological processes such as SBR, MBR, MBBR; biodegradability and toxicity tests with bacterial strains and surface wetlands, whose treatment philosophy is activated sludge. The main future trends are the reuse of treated wastewater, the analysis and control of costs towards the efficient use of resources and the primary study of the byproducts generated in advanced oxidation to improve the efficiencies in the coupling.


Insects ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 38
Author(s):  
Errol Hassan ◽  
Md Munir Mostafiz ◽  
Ellen Talairamo Iramu ◽  
Doug George ◽  
Kyeong-Yeoll Lee

Beneficial insects play a major role in controlling pest populations. In sustainable agricultural production systems, control methods compatible with integrated pest management (IPM) are preferred over broad-spectrum pesticides. EOs from aromatic plants may provide a new and safe alternative to synthetic chemicals. In this research, the efficacy of Fungatol, Gamma-T-ol, Fungatol plus neem, and Gamma-T-ol plus neem was evaluated against Aphidius colemani Viereck (Hymenoptera: Braconidae; Aphidiidae), the parasitoid of the cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae). Under laboratory and greenhouse conditions, five different concentrations of each formulation were applied to parasitized mummies and adult parasitoids. Results for parasitoid emergence from aphid mummies sprayed with different concentrations of Fungatol, Gamma-T-ol, Fungatol plus neem, and Gamma-T-ol plus neem in the laboratory and glasshouse showed that the formulations did not adversely affect adult emergence as rates above 60% were observed. For residual toxicity tests done by exposing adult parasitoids to a fresh, dry biopesticide film sprayed on glass plates, less than 20% mortality was observed after 48 h of exposure. Adult longevity tests revealed that the highest concentrations of some of the formulations evaluated were slightly toxic to A. colemani. According to the IOBC rating, our results indicated that most of the tested concentrations for each formulation were harmless to A. colemani. Based on the above results, it may be proposed that the formulations evaluated in this study are potential botanical pesticide candidates for incorporation into an IPM program.


2021 ◽  
Vol 8 ◽  
Author(s):  
Liqi Wang ◽  
Shiming Lv ◽  
Xiaoying Wang ◽  
Baosheng Liu ◽  
Zhong Wang

The rise of novel mcr mobile resistance genes seriously threatens the use of colistin as a last resort antibiotic for treatment of multidrug-resistant Gram-negative bacterial infections in humans. Large quantities of colistin are released annually into the environment through animal feces. This leads to environmental toxicity and promotes horizontal transmission of the mcr gene in aqueous environments. We examined colistin degradation catalyzed by the presence of strong oxidant Fe (VI). We found almost complete colistin degradation (&gt;95%) by Fe (VI) at initial colistin levels of 30 μM at a molar ratio of Fe (VI): colistin of 30 using an initial pH 7.0 at 25°C for 60 min. The presence of humic acid did not alter the degradation rate and had no significant impact on the removal of colistin by Fe (VI). Quantitative microbiological assays of Fe (VI)-treated colistin solutions using Escherichia coli, Staphylococcus aureus, and Bacillus subtilis indicated that the residual antibacterial activity was effectively eliminated by Fe (VI) oxidation. Luminescent bacteria toxicity tests using Vibrio fischeri indicated that both colistin and its degradation products in water were of low toxicity and the products showed decreased toxicity compared to the parent drug. Therefore, Fe (VI) oxidation is a highly effective and environment-friendly strategy to degrade colistin in water.


2021 ◽  
Vol 31 (1) ◽  
pp. e41325
Author(s):  
Laisa Borges Ferreira ◽  
Edilma Elayne da Silva ◽  
Silvia Adriana Meyer Lentz ◽  
Juliano Braun de Azeredo ◽  
Antonio Luiz Braga ◽  
...  

Objective: the development of new drugs against Methicillin-resistant Staphylococcus aureus is a priority to the World Health Organization. So, the objective of this study was to evaluate the antibacterial activity and toxicity of 5-bromo-3-((4-methoxyphenyl) sulfenyl)-1H-indole (3b) against MRSA.Methods: minimum inhibitory concentration (MIC) of 3b was determined against S. aureus ATCC 29213 and 43 clinical isolates. The time-kill assay was performed for 9 isolates. Analysis of variance followed by the post hoc Bonferroni test was used for the statistical tests.Results and conclusions: the MIC50 and MIC90 of 3b were 4 μg.mL-1 and 16 μg.mL-1 respectively. In time-kill assay, the 3b showed bactericidal activity to all evaluated isolates at concentrations of 1xMIC and 2xMIC and the re-growth effect was not observed. About the toxicity tests, 3b has not presented cytotoxicity, mutagenicity, or allergenicity. 3b had particularly good activity against MRSA demonstrating high potential for the development of new antimicrobials products.


Author(s):  
Kristin A. Connors ◽  
Jessica L. Brill ◽  
Teresa Norberg‐King ◽  
Mace G. Barron ◽  
Greg Carr ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3394
Author(s):  
Xiaomu Xu ◽  
Bo Liu ◽  
Haiyan Wu ◽  
Yichi Zhang ◽  
Xinyuan Tian ◽  
...  

Bacterial infections in wounded skin are associated with high mortality. The emergence of drug-resistant bacteria in wounded skin has been a challenge. Toluidine blue (TB) is a safe and inexpensive photosensitizer that can be activated and used in near-infrared photodynamic therapy to effectively kill methicillin-resistant Staphylococcus aureus (MRSA). However, its aggregation-induced quenching effect largely affects its clinical applications. In this study, TB nanoparticles (NPs) were synthesized using an ultrasound-assisted coating method. Their physicochemical and biological properties were studied and evaluated by scanning electron microscopy and Fourier-transform infrared spectroscopy. The TBNPs had a broad-spectrum antibacterial activity against Gram-positive bacteria (MRSA) and Gram-negative bacteria (E. coli). In addition, MTT, hemolysis, and acute toxicity tests confirmed that TBNPs had good biocompatibility. The TBNPs exhibited a high photodynamic performance under laser irradiation and efficiently killed E. coli and MRSA through generated reactive oxygen species, which destroyed the cell wall structure. The potential application of TBNPs in vivo was studied using an MRSA-infected wound model. The TBNPs could promote wound healing within 7 days, mainly by reducing the inflammation and promoting collagen deposition and granulation tissue formation. In conclusion, the TBNPs offer a promising strategy for clinical applications against multiple-drug resistance.


2021 ◽  
Vol 11 (24) ◽  
pp. 11603
Author(s):  
Marina Cunha Passarelli ◽  
Estefanía Bonnail ◽  
Augusto Cesar ◽  
T. Ángel DelValls ◽  
Inmaculada Riba

CO2 enrichment in the marine environment caused by leakages from carbon capture and storage technologies may occur over operational procedures. An integrated approach using weight-of-evidence was applied to assess the environmental risk associated with the acidification caused by CO2 enrichment in coastal sediments from Santos (Brazil). Chemical analyses (metal(loid)s and organic contaminant (e.g., hydrocarbons), toxicity tests (amphipods mortality, sea-urchin embryo-larval development) and macro-benthic community structure alteration assessment were performed with different acidified scenarios (pH 8.0–6.0) for two stations with different contamination degrees. These lines of evidence were statistically analyzed and integrated (multivariate analysis and ANOVA). Results of toxicity showed significant chronic effects starting at pH 7.0 while acute effects were observed starting at pH 6.5. The macro-benthic community integrity showed significant differences for all treatments at the Piaçaguera channel station, considered to be moderately contaminated. Results from the multivariate analysis correlated toxic effects and increase in the mobility of some elements with acidification. Also, the biological indexes were correlated with concentrations of dissolved Zn in seawater. The pH of 6.0 was extremely toxic for marine life due to its high acidification and metal bioavailability. The approach herein identified and discriminated the origin of the degradation caused by the acidification related to the enrichment of CO2.


Sign in / Sign up

Export Citation Format

Share Document