scholarly journals Hybrid Dual-Hop RF/FSO Terrestrial-Deep Space Communication System Under Solar Scintillation during Superior Solar Conjunction

2022 ◽  
Vol 12 (2) ◽  
pp. 619
Author(s):  
Meng Jin ◽  
Wenyi Liu ◽  
Yuan Hao ◽  
Ruihuan Wu ◽  
Zhongchao Wei ◽  
...  

Free-space optical communication (FSO) technology has wide prospects in deep space exploration, but it will encounter coronal turbulence during superior solar conjunction, and solar scintillation will seriously affect the communication quality. In this paper, we propose a terrestrial–deep space hybrid radio frequency (RF)/FSO system with the hybrid L-pulse position modulation-binary phase shift keying-subcarrier intensity modulation (L-PPM–BPSK–SIM) scheme, where the RF channel of the satellite-terrestrial relay follows the Rayleigh distribution, and the FSO channel of the relay satellite to the deep space probe adopts Gamma–Gamma distribution. Considering the pointing error, the expression of the bit error rate (BER), the outage probability, and the average channel capacity of the hybrid system are derived. In addition, we evaluated the influence of coronal turbulence parameters on the system through amplitude fluctuations. The simulation results demonstrate that the hybrid RF/FSO system improves the BER performance by 10 to 30 times in a deep space environment, and the use of a hybrid modulation can further reduce the BER. The non-Kolmogorov spectral index, outer scale, solar wind density fluctuation factor, and optical wavelength comprehensively affect the BER through amplitude fluctuations. Our research results have potential application value for evaluating the link performance of future deep space communications.

2019 ◽  
Vol 9 (18) ◽  
pp. 3724 ◽  
Author(s):  
Jiang ◽  
Zhao ◽  
Liu ◽  
Deng ◽  
Luo ◽  
...  

The improvement for hybrid radio frequency–free space optical (RF–FSO) communication system in wireless optical communications has acquired growing interests in recent years, but rarely improvement is based on hybrid modulation. Therefore, we conduct a research on end-to-end mixed RF–FSO system with the hybrid pulse position modulation–binary phase shift keying–subcarrier intensity modulation (PPM–BPSK–SIM) scheme. The RF link obeys Rayleigh distribution and the FSO link experiences Gamma–Gamma distribution. The average bit error rate (BER) for various PPM–BPSK–SIM schemes has been derived with consideration of atmospheric turbulence influence and pointing error condition. The outage probability and the average channel capacity of the system are discussed as well. Simulation results indicate that the pointing error aggravates the influence of atmospheric turbulence on the channel capacity, and the RF–FSO systematic performance is improved obviously while adopting PPM–BPSK–SIM under strong turbulence and severe pointing error conditions, especially, when the system average symbol length is greater than eight.


Sign in / Sign up

Export Citation Format

Share Document