Analysis of earth-to-satellite free-space optical link performance in the presence of turbulence, beam-wander induced pointing error and weather conditions for different intensity modulation schemes

2015 ◽  
Vol 9 (18) ◽  
pp. 2253-2258 ◽  
Author(s):  
Anjitha Viswanath ◽  
Subrat Kar ◽  
Virander Kumar Jain
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Bithi Mitra ◽  
Md. Jahedul Islam

AbstractIn this paper, the performance of two-dimensional (2-D) wavelength-hopping/time-spreading (WH/TS) optical code division multiple access (OCDMA) system over free space optical (FSO) channel is analyzed in the presence of pointing error and different weather conditions. Prime code scheme is employed for both wavelength-hopping and time-spreading to address user code-matrix. The operating central wavelength of 1550 nm is considered to demonstrate the bit error rate (BER) performance of the proposed system as a function of various system parameters. The required optical power of the proposed system is determined to maintain a BER value of 10−9. The numerical evaluation interprets that the BER performance is highly dependent on transmission length, transmitted power, pointing error angle as well as the number of simultaneous user. It is also observed that the 2-D OCDMA system over free space needs minimum required optical power in case of rainy atmospheric condition, but it is maximum for foggy atmospheric condition.


Author(s):  
Abdullah Jameel Mahdi ◽  
Wamidh Jalil Mazher ◽  
Osman Nuri Ucan

<p>Applying the drone-based free space optical (FSO) technology is recent in communication systems. The FSO technology hashigh-security features dueto narrow beamwidth, insusceptible to interferences, free license and landline connection is not appropriate. However, these advantages face many obstacles that affect the system's performance, such as random weather conditions and misalignment. The pointing error Hpis one of the critical factors of the channel gain H. The related parameters of the Hp factor: the pointing error angles θr and the path length Z, were manipulated to extract the applicable values at various receiver diameter values. The proposed system has two topologies: single input single output (SISO) and multiple input single output (MISO), flying in weak atmospheric turbulence. The simulation was done using MATLAB software 2020. The average bit error rate (ABER) for the system versus signal-to-noise ratio (SNR) were verified and analyzed. The results showed that at θr=10<sup>−3</sup>rad, Z increased in the range 10~100m for each one-centimeter increase of DR. At θr=10<sup>−2</sup>rad, the applicable Z was nearly 10% of the link distance Z when θr=10<sup>−3</sup>rad was applied. Consequently, an increase in θr must correspond decrease in Z and vice versa to maintain the system at high performance.</p>


Sign in / Sign up

Export Citation Format

Share Document