scholarly journals A Proposed Uncertainty Reduction Criterion of Renewable Energy Sources for Optimal Operation of Distribution Systems

2022 ◽  
Vol 12 (2) ◽  
pp. 623
Author(s):  
Eman Ali ◽  
Ragab El-Sehiemy ◽  
Adel Abou El-Ela ◽  
Marcos Tostado-Véliz ◽  
Salah Kamel

Power system operation and planning studies face many challenges with increasing of renewable energy sources (RESs) penetration. These challenges revolve around the RESs uncertainty and its applications on probabilistic forecasting, power system operation optimization and power system planning. This paper proposes a novel and effective criterion for uncertainties modeling of the RESs as well as system loads. Four sorting stages are applied for the proposed uncertainty cases reduction. Added to that, it proposes three different uncertainty reduction strategies for obtaining different accuracy and speed options. The proposed reduction strategies are tested on medium and large scale distribution systems; IEEE 69-bus and 118-bus systems. The obtained results verify the effectiveness of the proposed criterion in uncertainties modeling in distribution systems with acceptable level of accuracy.

2021 ◽  
Author(s):  
Vinay Kumar Tatikayala ◽  
Shishir Dixit

Abstract The concern for huge increasing electricity demand, fossil fuel depletion, developed infrastructure reliability, carbon footprint reduction insisted the power utility companies to uptake RES (Renewable Energy Sources). The improved adoption of RES like wind energy and solar energy into the prevailing transmission and distribution networks led to several problems. These problems could be rectified by optimizing the power system parameters like frequency response, inertia, stability, battery usage, efficiency and power loss. This review hence provide a comprehensive analysis on the impact of renewable energy sources like wind and solar energy on power system operation and control in accordance with the major findings of the existing works. This review highlights the difficulties in the installation of solar and wind power with adoptable solutions. The challenges of power systems regarding the encoding of non-linearized function could be rectified by AI (Artificial Intelligence). The paper also insists the importance of artificial intelligence algorithm in the optimization of power system parameters. Artificial intelligence methods is useful for resolving various issues in power systems such as control, scheduling, forecasting etc. Few artificial algorithms such as Atom search optimization, Particle swarm optimization, Salp swarm optimization were investigated in this review for improving the performance of the power system. In spite of optimization analysis, the paper investigate various storage system types for improving the power system in accordance with cost, application and operation characteristics. Proper understanding of these systems is necessary for the future designing and hence through revision of state of art characteristics has been performed in this paper.


2021 ◽  
pp. 120-127
Author(s):  
Karina Viskuba ◽  
Veronica Silinevicha

Renewable energy sources (RES) are efficient in meeting the demand for clean and affordable energy. The need for RES is undeniable and has many advantages but there are also some challenges that need to be taken into consideration and adapted to the energy system. One of the challenges is RES volatility and its impact on electricity prices and power system operation. Europe is trending to power system decentralisation through the involvement of local authorities, active consumers and citizens in the system operation. This article provides main information about the energy sector of Latvia and RES in the Baltic countries. It proposes a methodology for the complex analysis of correlation and regression dependences of natural and price indicators of the electric power industry, based on the adaptation of the corresponding classical mathematical models.


2011 ◽  
Vol 131 (8) ◽  
pp. 670-676 ◽  
Author(s):  
Naoto Yorino ◽  
Yutaka Sasaki ◽  
Shoki Fujita ◽  
Yoshifumi Zoka ◽  
Yoshiharu Okumoto

Sign in / Sign up

Export Citation Format

Share Document