scholarly journals Review and Classification of Emotion Recognition Based on EEG Brain-Computer Interface System Research: A Systematic Review

2017 ◽  
Vol 7 (12) ◽  
pp. 1239 ◽  
Author(s):  
Abeer Al-Nafjan ◽  
Manar Hosny ◽  
Yousef Al-Ohali ◽  
Areej Al-Wabil
Author(s):  
Oana Andreea Rușanu

This paper proposes several LabVIEW applications to accomplish the data acquisition, processing, features extraction and real-time classification of the electroencephalographic (EEG) signal detected by the embedded sensor of the NeuroSky Mindwave Mobile headset. The LabVIEW applications are aimed at the implementation of a Brain-Computer Interface system, which is necessary to people with neuromotor disabilities. It is analyzed a novel approach regarding the preparation and automatic generation of the EEG dataset by identifying the most relevant multiple mixtures between selected EEG rhythms (both time and frequency domains of raw signal, delta, theta, alpha, beta, gamma) and extracted statistical features (mean, median, standard deviation, route mean square, Kurtosis coefficient and others). The acquired raw EEG signal is processed and segmented into temporal sequences corresponding to the detection of the multiple voluntary eye-blinks EEG patterns. The main LabVIEW application accomplished the optimal real-time artificial neural networks techniques for the classification of the EEG temporal sequences corresponding to the four states: 0 - No Eye-Blink Detected; 1 - One Eye-Blink Detected; 2 – Two Eye-Blinks Detected and 3 – Three Eye-Blinks Detected. Nevertheless, the application can be used to classify other EEG patterns corresponding to different cognitive tasks, since the whole functionality and working principle could estimate the labels associated with various classes.


2013 ◽  
Vol 133 (3) ◽  
pp. 635-641
Author(s):  
Genzo Naito ◽  
Lui Yoshida ◽  
Takashi Numata ◽  
Yutaro Ogawa ◽  
Kiyoshi Kotani ◽  
...  

Author(s):  
Wakana Ishihara ◽  
Karen Moxon ◽  
Sheryl Ehrman ◽  
Mark Yarborough ◽  
Tina L. Panontin ◽  
...  

This systematic review addresses the plausibility of using novel feedback modalities for brain–computer interface (BCI) and attempts to identify the best feedback modality on the basis of the effectiveness or learning rate. Out of the chosen studies, it was found that 100% of studies tested visual feedback, 31.6% tested auditory feedback, 57.9% tested tactile feedback, and 21.1% tested proprioceptive feedback. Visual feedback was included in every study design because it was intrinsic to the response of the task (e.g. seeing a cursor move). However, when used alone, it was not very effective at improving accuracy or learning. Proprioceptive feedback was most successful at increasing the effectiveness of motor imagery BCI tasks involving neuroprosthetics. The use of auditory and tactile feedback resulted in mixed results. The limitations of this current study and further study recommendations are discussed.


2002 ◽  
Vol 41 (04) ◽  
pp. 337-341 ◽  
Author(s):  
F. Cincotti ◽  
D. Mattia ◽  
C. Babiloni ◽  
F. Carducci ◽  
L. Bianchi ◽  
...  

Summary Objectives: In this paper, we explored the use of quadratic classifiers based on Mahalanobis distance to detect mental EEG patterns from a reduced set of scalp recording electrodes. Methods: Electrodes are placed in scalp centro-parietal zones (C3, P3, C4 and P4 positions of the international 10-20 system). A Mahalanobis distance classifier based on the use of full covariance matrix was used. Results: The quadratic classifier was able to detect EEG activity related to imagination of movement with an affordable accuracy (97% correct classification, on average) by using only C3 and C4 electrodes. Conclusions: Such a result is interesting for the use of Mahalanobis-based classifiers in the brain computer interface area.


2016 ◽  
Vol 13 (6) ◽  
pp. 066015 ◽  
Author(s):  
Christian Breitwieser ◽  
Christoph Pokorny ◽  
Gernot R Müller-Putz

Sign in / Sign up

Export Citation Format

Share Document