scholarly journals Vibro-Acoustic Characterization of a Composite Structure Featuring an Innovative Phenolic Foam Core

2019 ◽  
Vol 9 (7) ◽  
pp. 1276 ◽  
Author(s):  
Massimo Fortini ◽  
Nicola Granzotto ◽  
Edoardo Piana

Composite panels are being increasingly used in many applications because they can combine several interesting properties, such as high load-bearing capacity, low weight, and excellent thermal insulation. Different core materials can be used for composite sandwich panels, like polystyrene, mineral wool, polyurethane, glass wool, or rigid phenolic foam, which is considered the rigid plastic foam with the best fire-proof properties. During the research and development phase, the use of simulation tools is often required for the improvement of the mechanical behavior of the material. The aim of the paper is to characterize some vibro-acoustic parameters of a sandwich material with phenolic open-cell foam core. The sound transmission loss of the structure is calculated based on its flexural behavior, represented through a frequency-dependent “apparent” bending stiffness which is estimated by natural frequency vibration tests on beam specimens. The comparison between sound transmission loss predictions and measurements in sound transmission suites according to ISO 10140-2 is presented and discussed. Finally, the early-stage prediction potentiality of the mathematical model is investigated when only nominal information is available on the constituent layers, showing that particular attention should be paid to the modifications introduced by the manufacturing process.

2020 ◽  
Vol 37 ◽  
pp. 126-133
Author(s):  
Yuan-Wei Li ◽  
Chao-Nan Wang

Abstract The purpose of this study was to investigate the sound insulation of double-leaf panels. In practice, double-leaf panels require a stud between two surface panels. To simplify the analysis, a stud was modeled as a spring and mass. Studies have indicated that the stiffness of the equivalent spring is not a constant and varies with the frequency of sound. Therefore, a frequency-dependent stiffness curve was used to model the effect of the stud to analyze the sound insulation of a double-leaf panel. First, the sound transmission loss of a panel reported by Halliwell was used to fit the results of this study to determine the stiffness of the distribution curve. With this stiffness distribution of steel stud, some previous proposed panels are also analyzed and are compared to the experimental results in the literature. The agreement is good. Finally, the effects of parameters, such as the thickness and density of the panel, thickness of the stud and spacing of the stud, on the sound insulation of double-leaf panels were analyzed.


Sign in / Sign up

Export Citation Format

Share Document