scholarly journals A Short-Term Forecast Model of foF2 Based on Elman Neural Network

2019 ◽  
Vol 9 (14) ◽  
pp. 2782
Author(s):  
Jieqing Fan ◽  
Chao Liu ◽  
Yajing Lv ◽  
Jing Han ◽  
Jian Wang

The critical frequency foF2 of the ionosphere F2 layer is one of the most important parameters of the ionosphere. Based on the Elman neural network (ENN), this paper constructs a single station forecasting model to predict foF2 one hour ahead. In order to avoid the network falling into local minimum, the model is optimized by the improved particle swarm optimization (IPSO). The input parameters used in the model include local time, seasonal information, solar cycle information and magnetic activity information. Data of the Wuhan Station from 2008 to 2016 were used to train and test the model. The prediction results of foF2 show that the root mean square error (RMSE) of the Elman neural network model is 4.30% lower than that of the back-propagation neural network (BPNN) model. The RMSE is further reduced by 8.92% after using the IPSO to optimize the model. This indicates that the Elman neural network model optimized by the improved particle swarm optimization is superior to the BP neural network and Elman neural network in the forecast of foF2 one hour ahead at Wuhan station.

2013 ◽  
Vol 333-335 ◽  
pp. 1384-1387
Author(s):  
Jin Jie Yao ◽  
Xiang Ju ◽  
Li Ming Wang ◽  
Jin Xiao Pan ◽  
Yan Han

Target localization technology has been intensively studied and broadly applied in many fields. This paper presents one improved particle swarm optimization technique in training a back-propagation neural network for position estimation in target localization. The proposed scheme combines particle swarm optimization (PSO), back-propagation neural network (BP), adaptive inertia weight and hybrid mutation, called IPSO-BP. To verify the proposed IPSO-BP approach, comparisons between the PSO-based BP approach (PSO-BP) and general back-propagation neural network (BP) are made. The computational results show that the proposed IPSO-BP approach exhibits much better performance in the training process and better prediction ability in the validation process than those using the other two base line approaches.


Sign in / Sign up

Export Citation Format

Share Document