scholarly journals Extracting Crop Spatial Distribution from Gaofen 2 Imagery Using a Convolutional Neural Network

2019 ◽  
Vol 9 (14) ◽  
pp. 2917 ◽  
Author(s):  
Yan Chen ◽  
Chengming Zhang ◽  
Shouyi Wang ◽  
Jianping Li ◽  
Feng Li ◽  
...  

Using satellite remote sensing has become a mainstream approach for extracting crop spatial distribution. Making edges finer is a challenge, while simultaneously extracting crop spatial distribution information from high-resolution remote sensing images using a convolutional neural network (CNN). Based on the characteristics of the crop area in the Gaofen 2 (GF-2) images, this paper proposes an improved CNN to extract fine crop areas. The CNN comprises a feature extractor and a classifier. The feature extractor employs a spectral feature extraction unit to generate spectral features, and five coding-decoding-pair units to generate five level features. A linear model is used to fuse features of different levels, and the fusion results are up-sampled to obtain a feature map consistent with the structure of the input image. This feature map is used by the classifier to perform pixel-by-pixel classification. In this study, the SegNet and RefineNet models and 21 GF-2 images of Feicheng County, Shandong Province, China, were chosen for comparison experiment. Our approach had an accuracy of 93.26%, which is higher than those of the existing SegNet (78.12%) and RefineNet (86.54%) models. This demonstrates the superiority of the proposed method in extracting crop spatial distribution information from GF-2 remote sensing images.

2018 ◽  
Vol 8 (10) ◽  
pp. 1981 ◽  
Author(s):  
Chengming Zhang ◽  
Shuai Gao ◽  
Xiaoxia Yang ◽  
Feng Li ◽  
Maorui Yue ◽  
...  

When extracting winter wheat spatial distribution by using convolutional neural network (CNN) from Gaofen-2 (GF-2) remote sensing images, accurate identification of edge pixel is the key to improving the result accuracy. In this paper, an approach for extracting accurate winter wheat spatial distribution based on CNN is proposed. A hybrid structure convolutional neural network (HSCNN) was first constructed, which consists of two independent sub-networks of different depths. The deeper sub-network was used to extract the pixels present in the interior of the winter wheat field, whereas the shallower sub-network extracts the pixels at the edge of the field. The model was trained by classification-based learning and used in image segmentation for obtaining the distribution of winter wheat. Experiments were performed on 39 GF-2 images of Shandong province captured during 2017–2018, with SegNet and DeepLab as comparison models. As shown by the results, the average accuracy of SegNet, DeepLab, and HSCNN was 0.765, 0.853, and 0.912, respectively. HSCNN was equally as accurate as DeepLab and superior to SegNet for identifying interior pixels, and its identification of the edge pixels was significantly better than the two comparison models, which showed the superiority of HSCNN in the identification of winter wheat spatial distribution.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Yu Wang ◽  
Xiaofei Wang ◽  
Junfan Jian

Landslides are a type of frequent and widespread natural disaster. It is of great significance to extract location information from the landslide in time. At present, most articles still select single band or RGB bands as the feature for landslide recognition. To improve the efficiency of landslide recognition, this study proposed a remote sensing recognition method based on the convolutional neural network of the mixed spectral characteristics. Firstly, this paper tried to add NDVI (normalized difference vegetation index) and NIRS (near-infrared spectroscopy) to enhance the features. Then, remote sensing images (predisaster and postdisaster images) with same spatial information but different time series information regarding landslide are taken directly from GF-1 satellite as input images. By combining the 4 bands (red + green + blue + near-infrared) of the prelandslide remote sensing images with the 4 bands of the postlandslide images and NDVI images, images with 9 bands were obtained, and the band values reflecting the changing characteristics of the landslide were determined. Finally, a deep learning convolutional neural network (CNN) was introduced to solve the problem. The proposed method was tested and verified with remote sensing data from the 2015 large-scale landslide event in Shanxi, China, and 2016 large-scale landslide event in Fujian, China. The results showed that the accuracy of the method was high. Compared with the traditional methods, the recognition efficiency was improved, proving the effectiveness and feasibility of the method.


Sign in / Sign up

Export Citation Format

Share Document