scholarly journals Simulation of the Cooling Effect of Porous Asphalt Pavement with Different Air Voids

2019 ◽  
Vol 9 (18) ◽  
pp. 3659 ◽  
Author(s):  
Lei Gao ◽  
Zhanqi Wang ◽  
Jianguang Xie ◽  
Yanping Liu ◽  
Sicheng Jia

Porous asphalt pavement shows lower internal temperature than does dense-graded asphalt pavement under high temperature conditions in summer. To study the cooling effect of porous asphalt pavement, the thermophysical properties of a dense-graded asphalt concrete (AC) mixture and a porous asphalt concrete (PAC) mixture were determined using a parallel model. Then, a laboratory-simulated sunshine experiment was carried out, and the convective heat transfer coefficients of specimens were inferred by virtual experiment. Lastly, the temperature field distribution simulation of PAC pavement was analyzed. The results show that the thermophysical properties of the PAC-13 mixture are lower than those of the AC-13 mixture; the larger the proportion of air voids, the greater the difference appears. Under windy conditions, the convective heat transfer coefficients of the PAC specimen surfaces are higher than those of AC specimens, and the convective heat transfer coefficient of the specimen surface shows an upward trend with increasing air voids. The cooling effect of the porous pavement increases with increasing proportion of air voids, and the cooling effect of the porous asphalt pavement is better than that of the dense-graded asphalt pavement. There is a good positive linear correlation between cooling effect and air voids, and mathematical models between them which can provide an important reference for PAC pavement design were fitted.

1999 ◽  
Vol 121 (5) ◽  
pp. 514-520 ◽  
Author(s):  
R. B. Roemer

Previous models of countercurrent blood vessel heat transfer have used one of two, different, equally valid but previously unreconciled formulations, based either on: (1) the difference between the arterial and venous vessels’ average wall temperatures, or (2) the difference between those vessels’ blood bulk fluid temperatures. This paper shows that these two formulations are only equivalent when the four, previously undefined, “convective heat transfer coefficients” that are used in the bulk temperature difference formulation (two coefficients each for the artery and vein) have very specific, problem-dependent relationships to the standard convective heat transfer coefficients. (The average wall temperature formulation uses those standard coefficients correctly.) The correct values of these bulk temperature difference formulation “convective heat transfer coefficients” are shown to be either: (1) specific functions of (a) the tissue conduction resistances, (b) the standard convective heat transfer coefficients, and (c) the independently specified bulk arterial, bulk venous and tissue temperatures, or (2) arbitrary, user defined values. Thus, they are generally not equivalent to the standard convective heat transfer coefficients that are regularly used, and must change values depending on the blood and tissue temperatures. This dependence can significantly limit the convenience and usefulness of the bulk temperature difference formulations.


Sign in / Sign up

Export Citation Format

Share Document