scholarly journals Real-Time Augmented Reality Physics Simulator for Education

2019 ◽  
Vol 9 (19) ◽  
pp. 4019 ◽  
Author(s):  
Sung ◽  
Ma ◽  
Choi ◽  
Hong

Physics education applications using augmented reality technology, which has been developed extensively in recent years, have a lot of restrictions in terms of performance and accuracy. The purpose of our research is to develop a real-time simulation system for physics education that is based on parallel processing. In this paper, we present a video see-through AR (Augmented Reality) system that includes an environment recognizer using a depth image of Microsoft’s Kinect V2 and a real-time soft body simulator based on parallel processing using GPU (Graphic Processing Unit). Soft body simulation can provide more realistic simulation results than rigid body simulation, so it can be more effective in systems for physics education. We have designed and implemented a system that provides the physical deformation and movement of 3D volumetric objects, and uses them in education. To verify the usefulness of the proposed system, we conducted a questionnaire survey of 10 students majoring in physics education. As a result of the questionnaire survey, 93% of respondents answered that they would like to use it for education. We plan to use the stand-alone AR device including one or more cameras to improve the system in the future.

Symmetry ◽  
2015 ◽  
Vol 7 (1) ◽  
pp. 182-192 ◽  
Author(s):  
Jaewoon Lee ◽  
Yeonjin Kim ◽  
Myeong-Hyeon Heo ◽  
Dongho Kim ◽  
Byeong-Seok Shin

2016 ◽  
Author(s):  
Donny Tytgat ◽  
Maarten Aerts ◽  
Jeroen De Busser ◽  
Sammy Lievens ◽  
Patrice Rondao Alface ◽  
...  

Author(s):  
Ankur Kumar

Augmented Reality (AR), which blends virtual information with the real environment in real-time performance, is constantly evolving and becoming more sophisticated and robust. It is critical to ensure that the augmented reality system is accepted and successful. This paper primarily discusses the current state of AR applications and the various fields in which AR is being used.


Electronics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 836 ◽  
Author(s):  
Young-Hoon Jin ◽  
In-Tae Hwang ◽  
Won-Hyung Lee

Augmented reality (AR) is a useful visualization technology that displays information by adding virtual images to the real world. In AR systems that require three-dimensional information, point cloud data is easy to use after real-time acquisition, however, it is difficult to measure and visualize real-time objects due to the large amount of data and a matching process. In this paper we explored a method of estimating pipes from point cloud data and visualizing them in real-time through augmented reality devices. In general, pipe estimation in a point cloud uses a Hough transform and is performed through a preprocessing process, such as noise filtering, normal estimation, or segmentation. However, there is a disadvantage in that the execution time is slow due to a large amount of computation. Therefore, for the real-time visualization in augmented reality devices, the fast cylinder matching method using random sample consensus (RANSAC) is required. In this paper, we proposed parallel processing, multiple frames, adjustable scale, and error correction for real-time visualization. The real-time visualization method through the augmented reality device obtained a depth image from the sensor and configured a uniform point cloud using a voxel grid algorithm. The constructed data was analyzed according to the fast cylinder matching method using RANSAC. The real-time visualization method through augmented reality devices is expected to be used to identify problems, such as the sagging of pipes, through real-time measurements at plant sites due to the spread of various AR devices.


2021 ◽  
pp. 1-1
Author(s):  
Pasquale Arpaia ◽  
Egidio De Benedetto ◽  
Concetta Anna Dodaro ◽  
Luigi Duraccio ◽  
Giuseppe Servillo

Sign in / Sign up

Export Citation Format

Share Document