scholarly journals The Performance Assessment of a Precast, Panel-Segmented Arch Bridge with Outriggers

2019 ◽  
Vol 9 (21) ◽  
pp. 4646 ◽  
Author(s):  
Seok Hyeon Jeon ◽  
Kwang-Il Cho ◽  
Jungwon Huh ◽  
Jin-Hee Ahn

Stone arch bridges, which are globally implemented, are advantageous with respect to material strength and durability. To minimize environmental damage from arch bridges, a structurally stable scheme that can resist variable external loads is required. This paper proposes a segmented precast arch bridge with outriggers to resist both the tensile force applied on the precast panels and the compressive force during construction and use. To assess the structural behavior and safety of the proposed arch bridge, a three-dimensional (3D) nonlinear structural analysis was conducted, considering the construction step and rise ratio of the arch bridge. The structural analysis of the proposed arch bridge revealed that its maximum horizontal and vertical displacements occurred at the support of the precast panel and the arch crown in a self-weight state. However, because of the compressive resistance characteristics of the outriggers connected to the precast panels, the structure demonstrated an effective performance in the self-weight state. With an increase in the construction steps, and the final completion of proposed arch bridge via installation of the precast arch segments and earthwork for the precast arch bridge with outriggers, the deformation of the arch members was mitigated, and the relative difference between the stress distributions of the members reduced. Hence, the arch bridge achieved structural stability. Based on the thrust line analysis results of the arch bridge with respect to the construction step using 3D structural analysis results, the thrust line was formed outside the precast panel at the arch crown and support, so was attributed to the behavior of the arch bridge in a self-weight state. The thrust line was found to act within the precast panel depending on the construction step. Analysis results confirmed that the behavior of the precast panel arch bridge with the proposed outrigger was stable and structurally effective.

2016 ◽  
Vol 823 ◽  
pp. 229-234
Author(s):  
Ovidiu Antonescu

The paper presents 3D modeling of a trapezoidal element (V-element) of a metal pushing V-belt. This type of belt is used on the Continuously Variable Transmissions (CVT) with friction pulleys that equip low and medium capacity motor vehicles. Also, the structural analysis of the V-belt element with regards to the material strength is presented. Modeling and simulation have been accomplished by an advanced CAD – CAM – CAE software which permits three-dimensional virtual design of the V-element or the entire belt.


2013 ◽  
Vol 444-445 ◽  
pp. 1295-1300 ◽  
Author(s):  
Hua Li ◽  
Rui Li ◽  
Yue Chen ◽  
De Xiang Zhu

Suspenders are main force-transmission components of half-through and through arch bridge, It is crucial for safety of bridges to its reliability and durability. Safety of the arch bridge will change when a suspender sudden failure, and affect the safety of the structure. Selecting a through arch bridge in Yunnan Province as the research object, it based on the three-dimensional finite element, this paper studied the dynamic response of arch bridge suspenders sudden failure on the failure-safety theory.


2018 ◽  
Vol 8 (12) ◽  
pp. 2553 ◽  
Author(s):  
Juan Jorquera-Lucerga

In a “classical” vertical planar arch bridge subjected only to in-plane loads, its funicular geometry (which is the geometry that results in an equilibrium state free from bending stresses, i.e., simply under axial forces) is contained within a vertical plane. In the so-called “spatial arch bridges,” their structural behavior extends from the essentially vertical in-plane behavior of the “classical” arch bridges to a three-dimensional behavior. The paper presents how the Force Density Method, which is a form-finding method originally developed for cable meshes, can be simplified to easily obtain three-dimensional funicular arches. The formulation and flow chart of the method is presented and discussed in detail within this paper. Additionally, some case studies illustrate its scope. This paper intends to be useful at the conceptual stage of bridge design when the three-dimensional geometry for the spatial arch bridge typology is considered either because of functional requirements, structural efficiency, or for aesthetical purposes.


2018 ◽  
Vol 12 (2) ◽  
pp. 36
Author(s):  
Alessio Pipinato

In the framework of bridge engineering, cable structure represent a key argument. The development of innovative bridge solutions are needed in order to keep time and costs at a reasonable level, maintaining at the same time an high level of structural safety and functionality. The network arch bridge solution completely respond to these requirements, and in addition could be designed as a very pleasant and formally elegant structure, because of its slenderness and lightness. In this paper, an introduction on the network arch solution is presented, together with structural analysis and data of relevant structures realized. Furthermore, an optimization of specific types of road and railway bridges is presented in the particular case of hollow sections, considering three alternative of cable disposition.


Metals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 632 ◽  
Author(s):  
Ahmed M. Sayed

The perforated steel sheets have many uses, so they should be studied under the influence of the uniaxial tensile load. The presence of these holes in the steel sheets certainly affects the mechanical properties. This paper aims at studying the behavior of the stress-strain engineering relationships of the perforated steel sheets. To achieve this, the three-dimensional finite element (FE) model is mainly designed to investigate the effect of this condition. Experimental tests were carried out on solid specimens to be used in the test of model accuracy of the FE simulation. Simulation testing shows that the FE modeling revealed the ability to calculate the stress-strain engineering relationships of perforated steel sheets. It can be concluded that the effect of a perforated rhombus shape is greater than the others, and perforated square shape has no effect on the stress-strain engineering relationships. The efficiency of the perforated staggered or linearly distribution shapes with the actual net area on the applied loads has the opposite effect, as it reduces the load capacity for all types of perforated shapes. Despite the decrease in load capacity, it improves the properties of the steel sheets.


1996 ◽  
Vol 58 (5) ◽  
pp. 869-886 ◽  
Author(s):  
I. Kaljević ◽  
S.N. Patnaik ◽  
D.A. Hopkins

2021 ◽  
Author(s):  
Juan José Jorquera-Lucerga ◽  
Juan Manuel GARCÍA-GUERRERO

<p>In tied-arch bridges, the way the arch and the deck are connected may become crucial. The deck is usually suspended from hangers made out of steel pinned cables capable of resisting axial forces only. However, a proper structural response, (both in-plane and out-of-plane) may be ensured by fixing and stiffening the hangers in order to resist, additionally, shear forces and bending moments. This paper studies the effect of different pinned and stiffened hanger arrangements on the structural behavior of the tied-arch footbridges, with the intention of providing designers with useful tools at the early steps of design. As a major conclusion, regarding the in-plane behavior, hangers composed of cables (either with vertical, Nielsen-Löhse or network arrangements) are recommended due to its low cost and ease of erection. Alternatively, longitudinally stiffened hangers, fixed at both ends, can be used. Regarding the out-of-plane behavior, and in addition to three-dimensional arrangements of cables, of limited effectiveness, transversally stiffened hangers fixed at both ends are the most efficient arrangement. A configuration almost as efficient can be achieved by locating a hinge at the end corresponding to the most flexible structural element (normally the arch). Its efficiency is further improved if the cross-section tapers from the fixed end to the pinned end.</p>


2021 ◽  
Vol 248 ◽  
pp. 113189
Author(s):  
Tommaso Papa ◽  
Nicola Grillanda ◽  
Gabriele Milani

Sign in / Sign up

Export Citation Format

Share Document