Towards three-dimensional structural analysis of pro renin receptor

10.2741/e447 ◽  
2012 ◽  
Vol E4 (3) ◽  
pp. 1150-1156 ◽  
Author(s):  
Akio Ebihara
1996 ◽  
Vol 58 (5) ◽  
pp. 869-886 ◽  
Author(s):  
I. Kaljević ◽  
S.N. Patnaik ◽  
D.A. Hopkins

2004 ◽  
Vol 127 (3) ◽  
pp. 324-334 ◽  
Author(s):  
Chien-Chang Pei ◽  
Sheng-Jye Hwang

The plastic packaging process for integrated circuits is subject to several fabrication defects. For packages containing leadframes, three major defects may occur in the molding process alone, namely, incomplete filling and void formation, wire sweep, and paddle shift. Paddle shift is the deflection of the leadframe pad and die. Excessive paddle shift reduces the encapsulation protection for the components and may result in failures due to excessive wire sweep. Computer-aided analysis is one of the tools that could be used to simulate and predict the occurrence of such molding-process-induced defects, even prior to the commencement of mass production of a component. This paper presents a methodology for computational modeling and prediction of paddle shift during the molding process. The methodology is based on modeling the flow of the polymer melt around the leadframe and paddle during the filling process, and extracting the pressure loading induced by the flow on the paddle. The pressure loading at different times during the filling process is then supplied to a three-dimensional, static, structural analysis module to determine the corresponding paddle deflections at those times. The paper outlines the procedures used to define the relevant geometries and to generate the meshes in the “fluid” and “structural” subdomains, and to ensure the compatibility of these meshes for the transfer of pressure loadings. Results are shown for a full paddle shift simulation. The effect on the overall model performance of different element types for the mold-filling analysis and the structural analysis is also investigated and discussed. In order to obtain more accurate results and in a shorter computational time for the combined (fluid and structural) paddle shift analysis, it was found that higher-order elements, such as hexahedra or prisms, are more suitable than tetrahedra.


Author(s):  
O. E. C. Prizeman ◽  
V. Sarhosis ◽  
A. M. D’Alri ◽  
C. J. Whitman ◽  
G. Muratore

Caerphilly Castle (1268-70) is the first concentric castle in Britain and the second largest in the UK. The dramatic inclination of its ruinous south west tower has been noted since 1539. Comparing data from historical surveys and a terrestrial laser scan undertaken in 2015, this paper seeks to review evidence for the long-term stability of the tower. Digital documentation and archival research by architects is collated to provide data for structural analysis by engineers. A terrestrial laser scan was used to create a detailed three dimensional finite element model to enable structural analysis of the current shape of the tower made by tetrahedral elements. An automated strategy has been implemented for the transformation of the complex three dimensional point cloud into a three dimensional finite element model. Numerical analysis has been carried out aiming at understanding the main structural weaknesses of the tower in its present condition. Comparisons of four sets of data: 1539, 1830, 1870 and 2015 enabled us to determine change albeit between very different methods of measurement.


Author(s):  
Marina L. Mozgaleva ◽  
Pavel A. Akimov ◽  
Taymuraz B. Kaytukov

he distinctive paper is devoted to so-called multigrid (particularly two-grid) method of structural analysis based on discrete Haar basis (one-dimensional, two-dimensional and three-dimensional problems are under consideration). Approximations of the mesh functions in discrete Haar bases of zero and first levels are described (the mesh function is represented as the sum in which one term is its approximation of the first level, and the second term is so-called complement (up to the initial state) on the grid of the first level). Special projectors are constructed for the spaces of vector functions of the original grid to the space of their approximation on the first-level grid and its complement (the refinement component) to the initial state. Basic scheme of the two-grid method is presented. This method allows solution of boundary problems of structural mechanics with the use of matrix operators of significantly smaller dimension. It should be noted that discrete analogue of the initial operator equation is a system of linear algebraic equations which is constructed with the use of finite element method or finite difference method. Block Gauss method can be used for direct solution.


1973 ◽  
Vol 95 (2) ◽  
pp. 525-532 ◽  
Author(s):  
M. Huang ◽  
A. H. Soni

Using graph theory and Polya’s theory of counting, the present paper performs structural synthesis and analysis of planar and three-dimensional kinematic chains. The Section 2 of the paper develops a mathematical model that permits one to perform structural analysis and synthesis of planar kinematic chains with kinematic elements such as revolute pairs, cam pairs, springs, belt-pulley, piston-cylinder, and gears. The theory developed is applied to enumerate eight-link kinematic chains with these kinematic elements. The Section 3 of the paper develops a mathematical model that permits one to perform structural analysis and synthesis of multi-loop spatial kinematic chains with higher and lower kinematic pairs. The theory developed is applied to enumerate all possible two-loop kinematic chains with or without general constraints.


Sign in / Sign up

Export Citation Format

Share Document