scholarly journals A Kinematic Controller for Liquid Pouring between Vessels Modelled with Smoothed Particle Hydrodynamics

2019 ◽  
Vol 9 (23) ◽  
pp. 5007 ◽  
Author(s):  
Camporredondo ◽  
Barber ◽  
Legrand ◽  
Muñoz

In robotics, the task of pouring liquids into vessels in non-structured or domestic spaces is an open field of study. A real time, fluid dynamic simulation, based on smoothed particle hydrodynamics (SPH), together with solid motion kinematics, allow for a closed loop control of pouring. In the first place, a control criterion related with the behavior of the liquid free surface is established to handle sloshing, especially in the initial phase of pouring to prevent liquid adhesion over the vessel rim. A 2-D, free surface SPH simulation is implemented on a graphic processing unit (GPU) to predict the liquid motion with real-time capability. The pouring vessel has a single degree of freedom of rotation, while the catching vessel has a single degree of freedom of translation, and the control loop handles the tilting angle of the pouring vessel. In this work, a two-stage pouring method is proposed, differentiating an initial phase where sloshing is particularly relevant, and a nearly constant outflow phase. For control purposes, the free outflow trajectory was simplified and modelled as a free falling solid with an initial velocity at the vessel crest, as calculated by the SPH simulation. As the first stage of pouring is more delicate, a novel slosh induction method (SIM) is proposed to overcome spilling issues during initial tilting in full filled vessels. Both robotic control and fluid modelling showed good results at multiples initial vessel filling heights.

Author(s):  
Samir Hassan Sadek ◽  
Mehmet Yildiz

This work presents the development of both weakly compressible and incompressible Smoothed Particle Hydrodynamics (SPH) models for simulating two-dimensional transient viscoelastic free surface flow which has extensive applications in polymer processing industries. As an illustration with industrial significance, we have chosen to model the extrudate swell of a second-order polymeric fluid. The extrudate or die swell is a phenomenon that takes place during the extrusion of polymeric fluids. When a polymeric fluid is forced through a die to give a polymer its desired shape, due to its viscoelastic non-Newtonian nature, it shows a tendency to swell or contract at the die exit depending on its rheological parameters. The die swell phenomenon is a typical example of a free surface problem where the free surface is formed at the die exit after the polymeric fluid has been extruded. The swelling process leads to an undesired increase in the dimensions of the extrudate. To be able to obtain a near-net shape product, the flow in the extrusion process should be well-understood to shed some light on the important process parameters behind the swelling phenomenon. To this end, a systematic study has been carried out to compare constitutive models proposed in literature for second-order fluids in terms of their ability to capture the physics behind the swelling phenomenon. The effect of various process and rheological parameters on the die swell such as the extrusion velocity, normal stress coefficients, and Reynolds and Deborah numbers have also been investigated. The models developed here can predict both swelling and contraction of the extrudate successfully. The die swell problem was solved for a wide range of Deborah numbers and for two different Re numbers. The numerical model was validated through the solution of fully developed Newtonian and Non-Newtonian viscoelastic flows in a two-dimensional channel, and the results of these two benchmark problems were compared with analytic solutions, and good agreements were obtained.


Sign in / Sign up

Export Citation Format

Share Document