scholarly journals Low Threshold Optical Bistability in Aperiodic PT-Symmetric Lattices Composited with Fibonacci Sequence Dielectrics and Graphene

2019 ◽  
Vol 9 (23) ◽  
pp. 5125 ◽  
Author(s):  
Zhao ◽  
Xu ◽  
Guo ◽  
Xu ◽  
Zhong ◽  
...  

We explore the optical bistability in aperiodic parity–time-symmetric (PT-symmetric) photonic lattices that are composed of Fibonacci sequence dielectrics and graphene at terahertz frequencies. Two Fibonacci sequence dielectrics, viz. aperiodic photonic lattices, are utilized for enhancing band-edge resonances and achieving the electric field localization that can enhance the nonlinearity of graphene. Modulating the gain-loss factor of dielectrics in the PT symmetry lattices further strengthens the nonlinearity effect and, consequently, low threshold bistability is realized. The interval between the upper and lower bistability thresholds enlarges as the momentum relaxation time of graphene changes. Moreover, we show that the bistability threshold can also be flexibly tuned by modulating the graphene chemical potential. The study might be applied in photomemories and optical switches.

2020 ◽  
Vol 10 (17) ◽  
pp. 5766
Author(s):  
Xiuju Zhao ◽  
Bin Xu ◽  
Xiangna Kong ◽  
Dong Zhong ◽  
Ming Fang ◽  
...  

The optical bistability, tristability and multistability are explored in arrays of graphene. The arrays are periodically arranged spatially by single sheets of graphene. Optical bistability could be achieved with a strong enough incident intensity of light wave. The thresholds of optical bistability and the intervals between the upper and lower thresholds change with the surface conductivity of graphene and the incident wavelength. By increasing the intensity of incident light, tristability and multistability can be induced as well. Furthermore, the thresholds of bistability, tristability and multistability can be regulated via the chemical potential of graphene. This study may have potential applications in optical logic gates, all-optical switches and photomemory.


2021 ◽  
pp. 127282
Author(s):  
Haiqin Deng ◽  
Chengpeng Ji ◽  
Xinye Zhang ◽  
Pei Chen ◽  
Licheng Wu ◽  
...  

2018 ◽  
Vol 9 (1) ◽  
pp. 139 ◽  
Author(s):  
Leyong Jiang ◽  
Jiao Tang ◽  
Jiao Xu ◽  
Zhiwei Zheng ◽  
Jun Dong ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Van Duong Ta ◽  
Rui Chen ◽  
Handong Sun

AbstractMicrolasers with controllable polarization of output emission are vital for on-chip optical communications, optical sensors and optical switches. In this work, we report a high quality (Q) factor, low-threshold polymer microfiber laser and the possibility of achieving laser emission with a desired polarization. The microfiber is fabricated by direct drawing from a dye-doped polymer solution and it can generate whispering gallery mode (WGM) lasing under optical pulse excitation. When the microfiber is pumped from the side with pumping direction perpendicular to the microfiber’s axis, the polarization direction of the output laser is found to be the same as that of the pump laser. Lasing emission with either transverse electric (TE) or transverse magnetic (TM) modes can be obtained and these two polarization states can be switched over by tuning the pumping laser. Furthermore, emission with both TE and TM modes can also be observed by changing the orientation of the microfiber relatively to pumping direction. Our finding provides an effective approach for achieving microlasers that have high Q lasing modes with anticipated polarization.


Photonics ◽  
2020 ◽  
Vol 7 (4) ◽  
pp. 122
Author(s):  
Yan Gao ◽  
Li Deng ◽  
Aixi Chen

In this paper, the phenomenon of the optical bistability of a cavity field is theoretically investigated in an optomechanical system containing an N-type atomic ensemble. In this hybrid optomechanical system, the atoms are coupled with two controlling light fields besides coupling with the cavity field. Under the nonresonant condition, we analyze the influences of the coupling strength between cavity and atoms, Rabi frequencies of the controlling light field, the detuning between the controlling light field and atoms, and pump field power on the optical bistable behavior of mean intracavity photon number. The nonlinear distribution of the mean intracavity photon number has a potential application in field optical switches and optical bistable devices.


2016 ◽  
Vol 53 ◽  
pp. 80-86 ◽  
Author(s):  
Morteza A. Sharif ◽  
M.H. Majles Ara ◽  
Bijan Ghafary ◽  
Somayeh Salmani ◽  
Salman Mohajer

Sign in / Sign up

Export Citation Format

Share Document