scholarly journals Detection of Extreme Phenomena in the Stable Boundary Layer over the Amazonian Forest

Atmosphere ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 952
Author(s):  
Francisco O. Miranda ◽  
Fernando M. Ramos ◽  
Celso von Randow ◽  
Cléo Q. Dias-Júnior ◽  
Marcelo Chamecki ◽  
...  

We apply different methods for detection of extreme phenomena (EP) in air-turbulent time series measured in the nocturnal boundary layer above the Amazon forest. The methods used were: (a) a Morlet complex wavelet transform, which is often used in analysis of non-linear application processes. Through the use of the wavelet, it is possible to observe a phase singularity that involves a strong interaction between an extensive range of scales; (b) recurrence plot tests, which were used to identify a sudden change between different stable atmospheric states. (c) statistical analysis of early-warning signals, which verify simultaneous increases in the autocorrelation function and in the variance in the state variable; and (d) analysis of wind speed versus turbulent kinetic energy to identify different turbulent regimes in the stable boundary layer. We found it is adequate to use a threshold to classify the cases of strong turbulence regime, as a result of the occurrence of EP in the tropical atmosphere. All methods used corroborate and indicate synergy between events that culminate in what we classify as EP of the stable boundary layer above the tropical forest.

2017 ◽  
Vol 233 ◽  
pp. 122-132 ◽  
Author(s):  
Cléo Q. Dias-Júnior ◽  
Leonardo D.A. Sá ◽  
Edson P. Marques Filho ◽  
Raoni A. Santana ◽  
Matthias Mauder ◽  
...  

Atmosphere ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 401
Author(s):  
Jonathan Biehl ◽  
Bastian Paas ◽  
Otto Klemm

City centers have to cope with an increasing amount of air pollution. The supply of fresh air is crucial yet difficult to ensure, especially under stable conditions of the atmospheric boundary layer. This case study used the PArallelized Large eddy simulation (LES) Model PALM to investigate the wind field over an urban lake that had once been built as a designated fresh air corridor for the city center of Münster, northwest, Germany. The model initialization was performed using the main wind direction and stable boundary layer conditions as input. The initial wind and temperature profiles included a weak nocturnal low-level jet. By emitting a passive scalar at one point on top of a bridge, the dispersion of fresh air could be traced over the lake’s surface, within street canyons leading to the city center and within the urban boundary layer above. The concept of city ventilation was confirmed in principle, but the air took a direct route from the shore of the lake to the city center above a former river bed and its adjoining streets rather than through the street canyons. According to the dispersion of the passive scalar, half of the city center was supplied with fresh air originating from the lake. PALM proved to be a useful tool to study fresh air corridors under stable boundary layer conditions.


Author(s):  
Lena Pfister ◽  
Karl Lapo ◽  
Larry Mahrt ◽  
Christoph K. Thomas

AbstractIn the stable boundary layer, thermal submesofronts (TSFs) are detected during the Shallow Cold Pool experiment in the Colorado plains, Colorado, USA in 2012. The topography induces TSFs by forming two different air layers converging on the valley-side wall while being stacked vertically above the valley bottom. The warm-air layer is mechanically generated by lee turbulence that consistently elevates near-surface temperatures, while the cold-air layer is thermodynamically driven by radiative cooling and the corresponding cold-air drainage decreases near-surface temperatures. The semi-stationary TSFs can only be detected, tracked, and investigated in detail when using fibre-optic distributed sensing (FODS), as point observations miss TSFs most of the time. Neither the occurrence of TSFs nor the characteristics of each air layer are connected to a specific wind or thermal regime. However, each air layer is characterized by a specific relationship between the wind speed and the friction velocity. Accordingly, a single threshold separating different flow regimes within the boundary layer is an oversimplification, especially during the occurrence of TSFs. No local forcings or their combination could predict the occurrence of TSFs except that they are less likely to occur during stronger near-surface or synoptic-scale flow. While classical conceptualizations and techniques of the boundary layer fail in describing the formation of TSFs, the use of spatially continuous data obtained from FODS provide new insights. Future studies need to incorporate spatially continuous data in the horizontal and vertical planes, in addition to classic sensor networks of sonic anemometry and thermohygrometers to fully characterize and describe boundary-layer phenomena.


2000 ◽  
Vol 97 (1) ◽  
pp. 1-24 ◽  
Author(s):  
J. J. Holden ◽  
S. H. Derbyshire ◽  
S. E. Belcher

Sign in / Sign up

Export Citation Format

Share Document