scholarly journals Observational Practices for Urban Microclimates Using Meteorologically Instrumented Unmanned Aircraft Systems

Atmosphere ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 1008
Author(s):  
Kevin Adkins ◽  
Peter Wambolt ◽  
Adrian Sescu ◽  
Christopher Swinford ◽  
Nickolas D. Macchiarella

The urban boundary layer (UBL) is one of the most important and least understood atmospheric domains and, consequently, warrants deep understanding and rigorous analysis via sophisticated experimental and numerical tools. When field experiments have been undertaken, they have primarily been accomplished with either a coarse network of in-situ sensors or slow response sensors based on timing or Doppler shifts, resulting in low resolution and decreasing performance with height. Small unmanned aircraft systems (UASs) offer an opportunity to improve on traditional UBL observational strategies that may require substantive infrastructure or prove impractical in a vibrant city, prohibitively expensive, or coarse in resolution. Multirotor UASs are compact, have the ability to take-off and land vertically, hover for long periods of time, and maneuver easily in all three spatial dimensions, making them advantageous for probing an obstacle-laden environment. Fixed-wing UASs offer an opportunity to cover vast horizontal and vertical distances, at low altitudes, in a continuous manner with high spatial resolution. Hence, fixed-wing UASs are advantageous for observing the roughness sublayer above the highest building height where traditional manned aircraft cannot safely fly. This work presents a methodology for UBL investigations using meteorologically instrumented UASs and discusses lessons learned and best practices garnered from a proof of concept field campaign that focused on the urban canopy layer and roughness sublayer of a large modern city with a high-rise urban canopy.

Author(s):  
Michael Plotnikov ◽  
John Collura

Rapid proliferation of small, unmanned aircraft systems (UAS) promises to revolutionize traditional methods used to carry out civil engineering surveys and analyses and conduct physical infrastructure inspections. One of the most promising areas of implementation of innovative UAS technology includes the integration of UAS into current state Department of Transportation (DOT) bridge inspections. While regular bridge inspections are paramount for road user safety, many traditional inspection methods and procedures are cumbersome, expensive, and time consuming; present significant hazards to both the traveling public and the inspection personnel; and are disruptive to normal operations of the transportation facilities. The results of recent studies indicate that UAS can serve as a useful tool in many highway bridge inspection procedures, while significantly reducing costs and time and improving safety. The major factors that affect the success of integrating UAS into the bridge inspection process relate to selection of the proper types of UAS platforms and avionics, data collection sensors and processing software, as well as conduct of task-specific pilot training. The paper provides an examination of current standard bridge inspection procedures and protocols currently carried out by state DOTs; an evaluation of state DOT experiences with the integration of UAS technology into bridge inspections; and an assessment of the issues and challenges associated with this technology. It is expected that this paper will be of interest to a wide range of stakeholders representing state and federal governments, academia, and industry.


2020 ◽  
Vol 12 (19) ◽  
pp. 3112
Author(s):  
Michael Hatfield ◽  
Catherine Cahill ◽  
Peter Webley ◽  
Jessica Garron ◽  
Rebecca Beltran

Over the past decade Unmanned Aircraft Systems (UAS, aka “drones”) have become pervasive, touching virtually all aspects of our world. While UAS offer great opportunity to better our lives and strengthen economies, at the same time these can significantly disrupt manned flight operations and put our very lives in peril. Balancing the demanding and competing requirements of safely integrating UAS into the United States (US) National Airspace System (NAS) has been a top priority of the Federal Aviation Administration (FAA) for several years. This paper outlines efforts taken by the FAA and the National Aeronautics and Space Administration (NASA) to create the UAS Traffic Management (UTM) system as a means to address this capability gap. It highlights the perspectives and experiences gained by the University of Alaska Fairbanks (UAF) Alaska Center for Unmanned Aircraft Systems Integration (ACUASI) as one of the FAA’s six UAS test sites participating in the NASA-led UTM program. The paper summarizes UAF’s participation in the UTM Technical Capability Level (TCL1-3) campaigns, including flight results, technical capabilities achieved, lessons learned, and continuing challenges regarding the implementation of UTM in the NAS. It also details future efforts needed to enable practical Beyond-Visual-Line-of-Sight (BVLOS) flights for UAS operations in rural Alaska.


2020 ◽  
Vol 6 (2) ◽  
pp. 42-50
Author(s):  
Wojciech Krasiński

This article discusses the employment of unmanned aircraft systems in crisis management in Poland after 2007. The conceptual framework and organization of crisis management in Poland is presented as an introduction to further discussion. This article then analyses capabilities of various categories of unmanned aircraft systems taking into account specific requirements of crisis management. This article also points  at preliminary lessons learned from employment of unmanned aircraft systems for crisis management in Poland in recent years. Due attention is paid to missions and the organization of employment of unmanned aircraft systems in crisis management operations. Perspectives of employing unmanned aircraft systems in crisis management are presented in the final part of the article.


2021 ◽  
Vol 102 (1) ◽  
Author(s):  
Matteo Scanavino ◽  
Arrigo Avi ◽  
Andrea Vilardi ◽  
Giorgio Guglieri

AbstractDespite many research studies focus on strategies to improve autopilot capabilities and bring artificial intelligence onboard Unmanned Aircraft Systems (UAS), there are still few experimental activities related to these vehicle performance under unconventional weather conditions. Air temperature and altitudes directly affect thrust and power coefficients of small scale propeller for UAS applications. Reynolds numbers are usually within the range 10,000 to 100,000 and important aerodynamic effects, such as the laminar separation bubbles, occur with a negative impact on propulsion performance. The development of autonomous UAS platforms to reduce pilot work-load and allow Beyond Visual Line of Sight (BVLOS) operations requires experimental data to validate capabilities of these innovative vehicles. High quality data are needed for a deep understanding of limitations and opportunities of UAS under unconventional flight conditions. The primary objective of this article is to present the characterization of a propeller and a quadrotor capabilities in a pressure-climate-controlled chamber. Mechanical and electrical data are measured with a dedicated test setup over a wide range of temperatures and altitudes. Test results are presented in terms of thrust and power coefficient trends. The experimental data shows low Reynolds numbers are responsible for degraded thrust performance. Moreover, details on brushless motor capabilities are also discussed considering different temperature and pressure conditions. The experimental data collected in the test campaign will be leveraged to improve UAS design, propulsion system modelling as well as to provide guidelines for safe UAS operations in extreme environments.


2011 ◽  
Vol 42 (6) ◽  
pp. 801-815 ◽  
Author(s):  
Boris Sergeevich Alyoshin ◽  
Valeriy Leonidovich Sukhanov ◽  
Vladimir Mikhaylovich Shibaev

2021 ◽  
Author(s):  
Krishna Muvva ◽  
Justin M. Bradley ◽  
Marilyn Wolf ◽  
Taylor Johnson

Sign in / Sign up

Export Citation Format

Share Document