scholarly journals Modeling Smoke Plume-Rise and Dispersion from Southern United States Prescribed Burns with Daysmoke

Atmosphere ◽  
2011 ◽  
Vol 2 (3) ◽  
pp. 358-388 ◽  
Author(s):  
Gary L. Achtemeier ◽  
Scott A. Goodrick ◽  
Yongqiang Liu ◽  
Fernando Garcia-Menendez ◽  
Yongtao Hu ◽  
...  
2013 ◽  
Vol 22 (2) ◽  
pp. 130 ◽  
Author(s):  
Yongqiang Liu ◽  
Scott L. Goodrick ◽  
Gary L. Achtemeier ◽  
Ken Forbus ◽  
David Combs

Smoke plume height is important for modelling smoke transport and resulting effects on air quality. This study presents analyses of ceilometer measurements of smoke plume heights for twenty prescribed burns in the south-eastern United States. Measurements were conducted from mid-winter to early summer between 2009 and 2011. Approximately half of the burns were on tracts of land over 400ha (1000 acres) in area. Average smoke plume height was ~1km. Plume height trended upward from winter to summer. These results could be used as an empirical guideline for fire managers to estimate smoke plume height in the south-eastern US when modelling and measurement are not available. The average could be used as a first-order approximation, and a second-order approximation could be obtained by using the average for spring and autumn seasons, and decreasing or increasing by 0.2km the average for winter or summer. The concentrations of particulate matter with an aerodynamic diameter less than 2.5 or 10μm (PM2.5 and PM10) within smoke plumes calculated from ceilometer backscatter are ~80 and 90μgm–3, and trend downward from winter to summer. Large smoke concentrations are found in the lower portion of smoke plumes for many burns. Smoke plume height shows fast and uniform fluctuations at minute scales for almost all burns and slow and irregular fluctuations at scales from tens of minutes to hours for some burns.


2014 ◽  
Vol 53 (8) ◽  
pp. 1961-1975 ◽  
Author(s):  
Yongqiang Liu

AbstractSmoke plume rise is an important factor for smoke transport and air quality impact modeling. This study provides a practical tool for estimating plume rise of prescribed fires. A regression model was developed on the basis of observed smoke plume rise for 20 prescribed fires in the southeastern United States. The independent variables include surface wind, air temperature, fuel moisture, and atmospheric planetary boundary layer (PBL) height. The first three variables were obtained from the Remote Automatic Weather Stations, most of which are installed in locations where they can monitor local fire danger and are easily accessed by fire managers. The PBL height was simulated with the Weather Research and Forecasting Model. The confidence and validation analyses indicate that the regression model is significant at the 95% confidence level and able to predict hourly values and the average smoke plume rise during a burn, respectively. The prediction of the average smoke plume rise shows larger skills. The model also shows improved skills over two extensively used empirical models for the prescribed burn cases examined in this study, suggesting that it may have the potential to improve smoke plume rise and air quality modeling for prescribed burns. The regression model, however, tends to underestimate large plume rise values and overestimate small ones. A suite of alternative regression models was also provided, one of which can be used when no PBL information is available.


Sign in / Sign up

Export Citation Format

Share Document