scholarly journals Optimal B-Spline Bases for the Numerical Solution of Fractional Differential Problems

Axioms ◽  
2018 ◽  
Vol 7 (3) ◽  
pp. 46 ◽  
Author(s):  
Francesca Pitolli
Open Physics ◽  
2013 ◽  
Vol 11 (10) ◽  
Author(s):  
Hossein Jafari ◽  
Chaudry Khalique ◽  
Mohammad Ramezani ◽  
Haleh Tajadodi

AbstractIn this paper, we present fractional B-spline collocation method for the numerical solution of fractional differential equations. We consider this method for solving linear fractional differential equations which involve Caputo-type fractional derivatives. The numerical results demonstrate that the method is efficient and quite accurate and it requires relatively less computational work. For this reason one can conclude that this method has advantage on other methods and hence demonstrates the importance of this work.


Symmetry ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 469 ◽  
Author(s):  
Azhar Iqbal ◽  
Nur Nadiah Abd Hamid ◽  
Ahmad Izani Md. Ismail

This paper is concerned with the numerical solution of the nonlinear Schrödinger (NLS) equation with Neumann boundary conditions by quintic B-spline Galerkin finite element method as the shape and weight functions over the finite domain. The Galerkin B-spline method is more efficient and simpler than the general Galerkin finite element method. For the Galerkin B-spline method, the Crank Nicolson and finite difference schemes are applied for nodal parameters and for time integration. Two numerical problems are discussed to demonstrate the accuracy and feasibility of the proposed method. The error norms L 2 , L ∞ and conservation laws I 1 ,   I 2 are calculated to check the accuracy and feasibility of the method. The results of the scheme are compared with previously obtained approximate solutions and are found to be in good agreement.


Sign in / Sign up

Export Citation Format

Share Document