scholarly journals A Metric for Finite Power Multisets of Positive Real Numbers Based on Minimal Matching

Axioms ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 94 ◽  
Author(s):  
Ray-Ming Chen

In this article, we show how to define a metric on the finite power multisets of positive real numbers. The metric, based on the minimal matching, consists of two parts: the matched part and the mismatched part. We also give some concrete applications and examples to demonstrate the validity of this metric.

2019 ◽  
Vol 2019 ◽  
pp. 1-6 ◽  
Author(s):  
Ray-Ming Chen

We show how to define a plethora of metrics for graphs—either full graphs or subgraphs. The method mainly utilizes the minimal matching between any two multisets of positive real numbers by comparing the multiple edges with respect to their corresponding vertices. In the end of this article, we also demonstrate how to implement these defined metrics with the help of adjacency matrices. These metrics are easy to be manipulated in real applications and could be amended according to different situations. By our metrics, one should be able to compare the distances between graphs, trees, and networks, in particular those with fuzzy properties.


2018 ◽  
Vol 7 (1) ◽  
pp. 77-83
Author(s):  
Rajendra Prasad Regmi

There are various methods of finding the square roots of positive real number. This paper deals with finding the principle square root of positive real numbers by using Lagrange’s and Newton’s interpolation method. The interpolation method is the process of finding the values of unknown quantity (y) between two known quantities.


1985 ◽  
Vol 50 (1) ◽  
pp. 110-122
Author(s):  
Howard Becker

For any A ⊂ R, the Banach game B(A) is the following infinite game on reals: Players I and II alternately play positive real numbers a1; a2, a3, a4,… such that for n > 1, an < an−1. Player I wins iff ai exists and is in A.This type of game was introduced by Banach in 1935 in the Scottish Book [15], Problem 43. The (rather vague) problem which Banach posed was to characterize those sets A for which I (II) has a winning strategy in B(A). (There are three parts to Problem 43. In the first, Mazur defined a game G**(A) for every set A ⊂ R and conjectured that II has a winning strategy in G**(A) iff A is meager and I has a winning strategy in G**(A) iff A is comeager in some neighborhood; this conjecture was proved by Banach. Presumably Banach had this result in mind when he asked the question about B(A), and hoped for a similar type of characterization.) Incidentally, Problem 43 of the Scottish Book appears to be the first time infinite games of any sort were studied by mathematicians.This paper will not provide the reader with any answer to Banach's question. I know of no nontrivial way to characterize when player I (or II) wins, and I suspect there is none. This paper is concerned with a different (also rather vague) question: For which sets A is the Banach game B(A) determined? To say that B(A) is determined means, of course, that one of the players has a winning strategy for B(A).


2009 ◽  
Vol 2009 ◽  
pp. 1-11 ◽  
Author(s):  
Dağistan Simsek ◽  
Bilal Demir ◽  
Cengiz Cinar

We study the behavior of the solutions of the following system of difference equationsxn+1=max⁡{A/xn,yn/xn},yn+1=max⁡{A/yn,xn/yn}where the constantAand the initial conditions are positive real numbers.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Emin Bešo ◽  
Senada Kalabušić ◽  
Naida Mujić ◽  
Esmir Pilav

AbstractWe consider the second-order rational difference equation $$ {x_{n+1}=\gamma +\delta \frac{x_{n}}{x^{2}_{n-1}}}, $$xn+1=γ+δxnxn−12, where γ, δ are positive real numbers and the initial conditions $x_{-1}$x−1 and $x_{0}$x0 are positive real numbers. Boundedness along with global attractivity and Neimark–Sacker bifurcation results are established. Furthermore, we give an asymptotic approximation of the invariant curve near the equilibrium point.


2014 ◽  
Vol 33 (2) ◽  
pp. 59-67
Author(s):  
Pankaj Kumar ◽  
S. S. Bhatia ◽  
Vijay Kumar

In this paper, we aim to generalize the notion of statistical convergence for double sequences on probabilistic normed spaces with the help of two nondecreasing sequences of positive real numbers $\lambda=(\lambda_{n})$ and $\mu = (\mu_{n})$  such that each tending to zero, also $\lambda_{n+1}\leq \lambda_{n}+1, \lambda_{1}=1,$ and $\mu_{n+1}\leq \mu_{n}+1, \mu_{1}=1.$ We also define generalized statistically Cauchy double sequences on PN space and establish the Cauchy convergence criteria in these spaces.


2013 ◽  
Vol 11 (02) ◽  
pp. 1350010
Author(s):  
HORST ALZER

Let α and β be real numbers. We prove that the functional inequality [Formula: see text] holds for all positive real numbers x and y if and only if [Formula: see text] Here, γ denotes Euler's constant.


2020 ◽  
Vol 126 (3) ◽  
pp. 559-567
Author(s):  
Megumi Kirihata ◽  
Makoto Yamashita

We prove a strengthened form of convexity for operator monotone decreasing positive functions defined on the positive real numbers. This extends Ando and Hiai's work to allow arbitrary positive maps instead of states (or the identity map), and functional calculus by operator monotone functions defined on the positive real numbers instead of the logarithmic function.


2019 ◽  
Vol 26 (1/2) ◽  
pp. 41-55 ◽  
Author(s):  
Artion Kashuri ◽  
Rozana Liko

The authors discover a new identity concerning differentiable mappings defined on m-invex set via fractional integrals. By using the obtained identity as an auxiliary result, some fractional integral inequalities for generalized relative semi- m-(r;h1,h2)-preinvex mappings by involving generalized Mittag-Leffler function are presented. It is pointed out that some new special cases can be deduced from main results of the paper. Also these inequalities have some connections with known integral inequalities. At the end, some applications to special means for different positive real numbers are provided as well.


Author(s):  
FRED RICHMAN ◽  
ELBERT WALKER

Let A be the automorphism group of the unit interval with its usual order relation, and let ℝ+ be the embedding of the multiplicative group of positive real numbers into A given by exponentiation. Strict t-norms are in one-to-one correspondence with the right cosets of ℝ+ in A. Here, we identify the normalizer of ℝ+ in A and give explicit formulas for the corresponding set of t-norms.


Sign in / Sign up

Export Citation Format

Share Document