scholarly journals Optimization of Fuzzy Controller Using Galactic Swarm Optimization with Type-2 Fuzzy Dynamic Parameter Adjustment

Axioms ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 26 ◽  
Author(s):  
Emer Bernal ◽  
Oscar Castillo ◽  
José Soria ◽  
Fevrier Valdez

Galactic swarm optimization (GSO) is a recently created metaheuristic which is inspired by the motion of galaxies and stars in the universe. This algorithm gives us the possibility of finding the global optimum with greater precision since it uses multiple exploration and exploitation cycles. In this paper we present a modification to galactic swarm optimization using type-1 (T1) and interval type-2 (IT2) fuzzy systems for the dynamic adjustment of the c3 and c4 parameters in the algorithm. In addition, the modification is used for the optimization of the fuzzy controller of an autonomous mobile robot. First, the galactic swarm optimization is tested for fuzzy controller optimization. Second, the GSO algorithm with the dynamic adjustment of parameters using T1 fuzzy systems is used for the optimization of the fuzzy controller of an autonomous mobile robot. Finally, the GSO algorithm with the dynamic adjustment of parameters using the IT2 fuzzy systems is applied to the optimization of the fuzzy controller. In the proposed approaches, perturbation (noise) was added to the plant in order to find out if our approach behaves well under perturbation to the autonomous mobile robot plant; additionally, we consider our ability to compare the results obtained with the approaches when no perturbation is considered.

2020 ◽  
Vol 39 (3) ◽  
pp. 3545-3559
Author(s):  
Emer Bernal ◽  
Oscar Castillo ◽  
José Soria ◽  
Fevrier Valdez

In this paper we present a modification based on generalized type-2 fuzzy logic to an algorithm that is inspired on the movement of large masses of stars and their attractive force in the universe, known as galactic swarm optimization (GSO). The modification consists on the dynamic adjustment of parameters in GSO using type-1 and type-2 fuzzy logic. The main idea of the proposed approach is the application of fuzzy systems to dynamically adapt the parameters of the GSO algorithm, which is then applied to parameter optimization of the membership functions of the bar and ball fuzzy controller. The experimentation was carried out using the original GSO algorithm, and the type-1 and type-2 fuzzy variants of GSO. In addition a disturbance was added to the bar and ball fuzzy controller plant to be able to validate the effectiveness of the proposed approach in optimizing fuzzy controllers. A formal comparison of results is performed with statistical tests showing that GSO with generalized type-2 fuzzy logic is the best method for optimizing the fuzzy controller.


2012 ◽  
Vol 2 (2) ◽  
Author(s):  
B. Deepak ◽  
Dayal Parhi

AbstractA novel approach based on particle swarm optimization has been presented in this paper for solving mobile robot navigation task. The proposed technique tries to optimize the path generated by an intelligent mobile robot from its source position to destination position in its work space. For solving this problem, a new fitness function has been modelled, which satisfies the obstacle avoidance and optimal path traversal conditions. From the obtained fitness values of each particle in the swarm, the robot moves towards the particle which is having optimal fitness value. Simulation results are provided to validate the feasibility of the developed methodology in various unknown environments.


Sign in / Sign up

Export Citation Format

Share Document