scholarly journals Hardening the Security of Multi-Access Edge Computing through Bio-Inspired VM Introspection

2021 ◽  
Vol 5 (4) ◽  
pp. 52
Author(s):  
Huseyn Huseynov ◽  
Tarek Saadawi ◽  
Kenichi Kourai

The extreme bandwidth and performance of 5G mobile networks changes the way we develop and utilize digital services. Within a few years, 5G will not only touch technology and applications, but dramatically change the economy, our society and individual life. One of the emerging technologies that enables the evolution to 5G by bringing cloud capabilities near to the end users is Edge Computing or also known as Multi-Access Edge Computing (MEC) that will become pertinent towards the evolution of 5G. This evolution also entails growth in the threat landscape and increase privacy in concerns at different application areas, hence security and privacy plays a central role in the evolution towards 5G. Since MEC application instantiated in the virtualized infrastructure, in this paper we present a distributed application that aims to constantly introspect multiple virtual machines (VMs) in order to detect malicious activities based on their anomalous behavior. Once suspicious processes detected, our IDS in real-time notifies system administrator about the potential threat. Developed software is able to detect keyloggers, rootkits, trojans, process hiding and other intrusion artifacts via agent-less operation, by operating remotely or directly from the host machine. Remote memory introspection means no software to install, no notice to malware to evacuate or destroy data. Experimental results of remote VMI on more than 50 different malicious code demonstrate average anomaly detection rate close to 97%. We have established wide testbed environment connecting networks of two universities Kyushu Institute of Technology and The City College of New York through secure GRE tunnel. Conducted experiments on this testbed deliver high response time of the proposed system.

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Ji-Ming Chen ◽  
Shi Chen ◽  
Xiang Wang ◽  
Lin Lin ◽  
Li Wang

With the rapid development of Internet of Things technology, a large amount of user information needs to be uploaded to the cloud server for computing and storage. Side-channel attacks steal the private information of other virtual machines by coresident virtual machines to bring huge security threats to edge computing. Virtual machine migration technology is currently the main way to defend against side-channel attacks. VM migration can effectively prevent attackers from realizing coresident virtual machines, thereby ensuring data security and privacy protection of edge computing based on the Internet of Things. This paper considers the relevance between application services and proposes a VM migration strategy based on service correlation. This strategy defines service relevance factors to quantify the degree of service relevance, build VM migration groups through service relevance factors, and effectively reduce communication overhead between servers during migration, design and implement the VM memory migration based on the post-copy method, effectively reduce the occurrence of page fault interruption, and improve the efficiency of VM migration.


2020 ◽  
Author(s):  
Long Zhang ◽  
Shanshan Zhuge ◽  
Yao Wang ◽  
Haitao Xu ◽  
Enchang Sun

By decoupling network functions from the underlying physical machines (PMs) at the edge of the networks, the virtualized multi-access edge computing (MEC) enables deployment of new network services and elastic network scaling to reduce maintenance costs in a more flexible, scalable and cost-effective manner. Although there are appealing performance gains to be achieved, the placement of virtual machines (VMs) on top of the sharing PMs to support computation-intensive applications for the smart mobile devices becomes a major challenge, especially for an increasing network scale. In this paper, we attempt to deal with the VM placement problem in virtualized MEC system, which is targeted for finding a performance balance between energy consumption and computing/offloading delay. To capture such a tradeoff for VM placement, we formulate a weighted sum based cost minimization problem as a pure 0-1 integer linear programming problem, which is NP-complete and very complex to solve with lower complexity. Based on the one-to-one mapping relation constraint, the VM placement problem is converted into a many-to-many two-sided matching problem between the VM instances and the PMs. Motivated by the student project allocation problem, we develop an extended two-sided matching algorithm with lower computational complexity for solving the many-to-many matching problem. Simulation results are presented to demonstrate the effectiveness of our proposed matching algorithm, and the normalization factor is of great significance to obtain lower total cost.


2021 ◽  
Author(s):  
Long Zhang ◽  
Shanshan Zhuge ◽  
Yao Wang ◽  
Haitao Xu ◽  
Enchang Sun

By decoupling network functions from the underlying physical machines (PMs) at the edge of the networks, the virtualized multi-access edge computing (MEC) enables deployment of new network services and elastic network scaling to reduce maintenance costs in a more flexible, scalable and cost-effective manner. Although there are appealing performance gains to be achieved, the placement of virtual machines (VMs) on top of the sharing PMs to support computation-intensive applications for the smart mobile devices becomes a major challenge, especially for an increasing network scale. In this paper, we attempt to deal with the VM placement problem in virtualized MEC system, which is targeted for finding a performance balance between energy consumption and computing/offloading delay. To capture such a tradeoff for VM placement, we formulate a weighted sum based cost minimization problem as a pure 0-1 integer linear programming problem, which is NP-complete and very complex to solve with lower complexity. Based on the one-to-one mapping relation constraint, the VM placement problem is converted into a many-to-many two-sided matching problem between the VM instances and the PMs. Motivated by the student project allocation problem, we develop an extended two-sided matching algorithm with lower computational complexity for solving the many-to-many matching problem. Simulation results are presented to demonstrate the effectiveness of our proposed matching algorithm, and the normalization factor is of great significance to obtain lower total cost.


2019 ◽  
Vol 19 (4) ◽  
pp. 73-89 ◽  
Author(s):  
Evelina N. Pencheva ◽  
Ivaylo I. Atanasov ◽  
Vladislav G. Vladislavov

Abstract 5th Generation (5G) mobile system is expected to support the requirements of mission critical communications for ultra reliability and availability, and very low latency. With the development of messaging and data transfer in mobile networks, mission critical communication users see more and more potential in data communications. In this paper, we explore the capabilities of Multi-access Edge Computing (MEC) that appears to be a key 5G component, to provide short messaging service at the network edge. The provided use cases illustrate the capabilities for transferring mobile originating and mobile terminating short messages to and from mission critical mobile edge applications. The data model describes the service resource structure and the Application Programming Interface definitions illustrate how the mobile edge applications can use the service. Some implementation aspects related to behavioral logic of the network and applications are provided. The performance analysis enables estimation of latency introduced by the service.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 18706-18721
Author(s):  
Belal Ali ◽  
Mark A. Gregory ◽  
Shuo Li

Author(s):  
Pasika Ranaweera ◽  
Anca Delia Jurcut ◽  
Madhusanka Liyanage

2020 ◽  
Author(s):  
Long Zhang ◽  
Shanshan Zhuge ◽  
Yao Wang ◽  
Haitao Xu ◽  
Enchang Sun

By decoupling network functions from the underlying physical machines (PMs) at the edge of the networks, the virtualized multi-access edge computing (MEC) enables deployment of new network services and elastic network scaling to reduce maintenance costs in a more flexible, scalable and cost-effective manner. Although there are appealing performance gains to be achieved, the placement of virtual machines (VMs) on top of the sharing PMs to support computation-intensive applications for the smart mobile devices becomes a major challenge, especially for an increasing network scale. In this paper, we attempt to deal with the VM placement problem in virtualized MEC system, which is targeted for finding a performance balance between energy consumption and computing/offloading delay. To capture such a tradeoff for VM placement, we formulate a weighted sum based cost minimization problem as a pure 0-1 integer linear programming problem, which is NP-complete and very complex to solve with lower complexity. Based on the one-to-one mapping relation constraint, the VM placement problem is converted into a many-to-many two-sided matching problem between the VM instances and the PMs. Motivated by the student project allocation problem, we develop an extended two-sided matching algorithm with lower computational complexity for solving the many-to-many matching problem. Simulation results are presented to demonstrate the effectiveness of our proposed matching algorithm, and the normalization factor is of great significance to obtain lower total cost.


Sign in / Sign up

Export Citation Format

Share Document