scholarly journals The Evolution of Trait Disparity during the Radiation of the Plant Genus Macrocarpaea (Gentianaceae) in the Tropical Andes

Biology ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 825
Author(s):  
Julien C. Vieu ◽  
Darina Koubínová ◽  
Jason R. Grant

The evolutionary processes responsible for the extraordinary diversity in the middle elevation montane forests of the Tropical Andes (MMF; 1000–3500 m) remain poorly understood. It is not clear whether adaptive divergence, niche conservatism or geographical processes were the main contributors to the radiation of the respective lineages occurring there. We investigated the evolutionary history of plant lineages in the MMF. We used the vascular plant genus Macrocarpaea (Gentianaceae) as a model, as it consists of 118 morphologically diverse species, a majority of which are endemic to the MMF. We used a time-calibrated molecular phylogeny and morphological and climatic data to compare a set of evolutionary scenarios of various levels of complexity in a phylogenetic comparative framework. In this paper, we show that the hypothesis of adaptive radiation for Macrocarpaea in the MMF is unlikely. The genus remained confined to the upper montane forests (UMF > 1800 m) during more than a half of its evolutionary history, possibly due to evolutionary constraints. Later, coinciding with the beginning of the Pleistocene (around 2.58 Ma), a phylogenetically derived (recently branching) clade, here referred to as the M. micrantha clade (25 species), successfully colonized and radiated in the lower montane forests (LMF < 1800 m). This colonization was accompanied by the evolution of a new leaf phenotype that is unique to the species of the M. micrantha clade that likely represents an adaptation to life in this new environment (adaptive zone). Therefore, our results suggest that niche conservatism and geographical processes have dominated most of the diversification history of Macrocarpaea, but that a rare adaptive divergence event allowed a transition into a new adaptive zone and enabled progressive radiation in this zone through geographical processes.

The Condor ◽  
2006 ◽  
Vol 108 (3) ◽  
pp. 489-508
Author(s):  
Matthew P. Alexander ◽  
Kevin J. Burns

AbstractThis study uses mitochondrial DNA (mtDNA) to examine the phylogeography of the White-headed Woodpecker (Picoides albolarvatus), one of the least-studied woodpeckers in North America. A mismatch distribution and calculation of Tajima's D indicate that the overall phylogeographic history of the species is characterized by a recent range expansion that probably occurred after the start of the Pleistocene. In addition, a nested clade phylogeographic analysis indicates that additional processes such as allopatric fragmentation and restricted gene flow have influenced the evolutionary history of this species. Traditionally, the White-headed Woodpecker has been split into two subspecies whose distributions meet in the northern part of the Transverse Ranges in California. The two subspecies differ morphologically, with the southern subspecies having a larger bill in proportion to its body size than the northern subspecies. Geographical variation in mtDNA is concordant with a division at the Transverse Ranges that corresponds to the morphological variation seen between the two subspecies. An analysis of molecular variance indicates that 27% of the genetic variation results from differences between the northern and southern subspecies. Furthermore, birds in the northern part of the range differ from those in the southern part of the range by at least one base substitution. These results agree with the hypothesis that the larger bill of the southern subspecies is the result of recent local adaptation to feeding on the large cones of Coulter pines (Pinus coulteri).


2017 ◽  
Author(s):  
Christine D. Bacon ◽  
Francisco Velásquez-Puentes ◽  
Luis Felipe Hinojosa ◽  
Thomas Schwartz ◽  
Bengt Oxelman ◽  
...  

Several studies have demonstrated the contribution of northern immigrants to the flora of the tropical Andes – the world’s “hottest” biodiversity hotspot. However, much less is known about the biogeographic history and diversification of Andean groups with southern origins, although it has been suggested that northern and southern groups have contributed roughly equally to the high Andean (i.e. páramo) flora. Here we infer the evolutionary history of the southern hemisphere plant genus Gunnera, a lineage with a rich fossil history and an important ecological role as an early colonising species characteristic of wet, montane environments. Our results show striking contrasts in species diversification, where some species may have persisted for some 90 million years, whereas others date to less than 2 Ma since origination. The outstanding longevity of the group is likely linked to a high degree of niche conservatism across its highly disjunct range, whereby Gunnera tracks damp and boggy soils in cool habitats. Colonisation of the northern Andes is related to Quaternary climate change, with subsequent rapid diversification appearing to be driven by their ability to take advantage of environmental opportunities. This study demonstrates the composite origin of a mega-diverse biota.


2021 ◽  
Author(s):  
Marlon E. Cobos ◽  
Yalin Cheng ◽  
Gang Song ◽  
Fumin Lei ◽  
A. Townsend Peterson

This study explores the evolutionary history of ecological niche characters in the Eurasian snowfinch lineage. Specifically, we use new analytical approaches to reconstruct ecological niche evolution, taking uncertainty in knowledge of the ecological niche limits into account. We found an overall pattern of niche conservatism in relation to both temperature and precipitation characteristics of niches, but for one dramatic niche evolution event, in Montifringilla nivalis. Interestingly, this species is also that which has by far the broadest geographic distribution among snowfinches. We conclude that an evolutionary change in niche characteristics perhaps within M. nivalis (i.e., present in some and not all of its populations) made possible the broad, westward range expansion of that species, thus changing the distributional potential of the snowfinch lineage dramatically.


2017 ◽  
Author(s):  
Christine D. Bacon ◽  
Francisco Velásquez-Puentes ◽  
Luis Felipe Hinojosa ◽  
Thomas Schwartz ◽  
Bengt Oxelman ◽  
...  

Several studies have demonstrated the contribution of northern immigrants to the flora of the tropical Andes – the world’s “hottest” biodiversity hotspot. However, much less is known about the biogeographic history and diversification of Andean groups with southern origins, although it has been suggested that northern and southern groups have contributed roughly equally to the high Andean (i.e. páramo) flora. Here we infer the evolutionary history of the southern hemisphere plant genus Gunnera, a lineage with a rich fossil history and an important ecological role as an early colonising species characteristic of wet, montane environments. Our results show striking contrasts in species diversification, where some species may have persisted for some 90 million years, whereas others date to less than 2 Ma since origination. The outstanding longevity of the group is likely linked to a high degree of niche conservatism across its highly disjunct range, whereby Gunnera tracks damp and boggy soils in cool habitats. Colonisation of the northern Andes is related to Quaternary climate change, with subsequent rapid diversification appearing to be driven by their ability to take advantage of environmental opportunities. This study demonstrates the composite origin of a mega-diverse biota.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4388 ◽  
Author(s):  
Christine D. Bacon ◽  
Francisco J. Velásquez-Puentes ◽  
Luis Felipe Hinojosa ◽  
Thomas Schwartz ◽  
Bengt Oxelman ◽  
...  

Several studies have demonstrated the contribution of northern immigrants to the flora of the tropical Andes—the world’s richest and most diverse biodiversity hotspot. However, much less is known about the biogeographic history and diversification of Andean groups with southern origins, although it has been suggested that northern and southern groups have contributed roughly equally to the high Andean (i.e., páramo) flora. Here we infer the evolutionary history of the southern hemisphere plant genusGunnera, a lineage with a rich fossil history and an important ecological role as an early colonising species characteristic of wet, montane environments. Our results show striking contrasts in species diversification, where some species may have persisted for some 90 million years, and whereas others date to less than 2 Ma since origination. The outstanding longevity of the group is likely linked to a high degree of niche conservatism across its highly disjunct range, wherebyGunneratracks damp and boggy soils in cool habitats. Colonisation of the northern Andes is related to Quaternary climate change, with subsequent rapid diversification appearing to be driven by their ability to take advantage of environmental opportunities. This study demonstrates the composite origin of a mega-diverse biota.


2018 ◽  
Vol 41 ◽  
Author(s):  
Kevin Arceneaux

AbstractIntuitions guide decision-making, and looking to the evolutionary history of humans illuminates why some behavioral responses are more intuitive than others. Yet a place remains for cognitive processes to second-guess intuitive responses – that is, to be reflective – and individual differences abound in automatic, intuitive processing as well.


Sign in / Sign up

Export Citation Format

Share Document