scholarly journals What Happened to the Phycobilisome?

Biomolecules ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 748 ◽  
Author(s):  
Beverley R. Green

The phycobilisome (PBS) is the major light-harvesting complex of photosynthesis in cyanobacteria, red algae, and glaucophyte algae. In spite of the fact that it is very well structured to absorb light and transfer it efficiently to photosynthetic reaction centers, it has been completely lost in the green algae and plants. It is difficult to see how selection alone could account for such a major loss. An alternative scenario takes into account the role of chance, enabled by (contingent on) the evolution of an alternative antenna system early in the diversification of the three lineages from the first photosynthetic eukaryote.

Genome ◽  
2010 ◽  
Vol 53 (1) ◽  
pp. 68-78 ◽  
Author(s):  
Jonathan A.D. Neilson ◽  
Dion G. Durnford

Light-harvesting-like (LIL) proteins are low-molecular-mass membrane proteins related to the light-harvesting complexes, which form the dominant antenna system in most photosynthetic eukaryotes. To analyze the LIL protein family, we mined a number of publicly available databases to identify members of this family in a broad range of organisms. LIL proteins are diverse, having one to three predicted transmembrane helices. One- and two-helix LIL proteins were found in all the major photosynthetic eukaryote lineages (glaucophytes, red algae, and green algae) and are particularly well conserved in the green algae and land plants. In most cases, however, these proteins are not conserved between major lineages, and in some cases appear to have evolved independently. Three-helix LIL proteins are well conserved within the gymnosperms and angiosperms, but are much more divergent, and have been duplicated multiple times, in the green algae and bryophytes. We also identified a novel LIL protein in two Micromonas strains that contains a fourth hydrophobic region. This analysis identifies conserved members of the LIL protein family, signifying their importance to photosynthetic eukaryotes. It also indicates that classification of these proteins based on structural characteristics alone inadequately reflects the evolutionary history observed in this complex protein family.


2020 ◽  
Vol 102 (3) ◽  
pp. 529-540
Author(s):  
Ping‐Ping Hu ◽  
Jian‐Yun Hou ◽  
Ya‐Li Xu ◽  
Nan‐Nan Niu ◽  
Cheng Zhao ◽  
...  

mSystems ◽  
2020 ◽  
Vol 5 (6) ◽  
pp. e01044-20
Author(s):  
Karel Kopejtka ◽  
Jürgen Tomasch ◽  
Yonghui Zeng ◽  
Vadim Selyanin ◽  
Marko Dachev ◽  
...  

ABSTRACTPhotoheterotrophic bacteria represent an important part of aquatic microbial communities. There exist two fundamentally different light-harvesting systems: bacteriochlorophyll-containing reaction centers or rhodopsins. Here, we report a photoheterotrophic Sphingomonas strain isolated from an oligotrophic lake, which contains complete sets of genes for both rhodopsin-based and bacteriochlorophyll-based phototrophy. Interestingly, the identified genes were not expressed when cultured in liquid organic media. Using reverse transcription quantitative PCR (RT-qPCR), RNA sequencing, and bacteriochlorophyll a quantification, we document that bacteriochlorophyll synthesis was repressed by high concentrations of glucose or galactose in the medium. Coactivation of photosynthesis genes together with genes for TonB-dependent transporters suggests the utilization of light energy for nutrient import. The photosynthetic units were formed by ring-shaped light-harvesting complex 1 and reaction centers with bacteriochlorophyll a and spirilloxanthin as the main light-harvesting pigments. The identified rhodopsin gene belonged to the xanthorhodopsin family, but it lacks salinixanthin antenna. In contrast to bacteriochlorophyll, the expression of xanthorhodopsin remained minimal under all experimental conditions tested. Since the gene was found in the same operon as a histidine kinase, we propose that it might serve as a light sensor. Our results document that photoheterotrophic Sphingomonas bacteria use the energy of light under carbon-limited conditions, while under carbon-replete conditions, they cover all their metabolic needs through oxidative phosphorylation.IMPORTANCE Phototrophic organisms are key components of many natural environments. There exist two main phototrophic groups: species that collect light energy using various kinds of (bacterio)chlorophylls and species that utilize rhodopsins. Here, we present a freshwater bacterium Sphingomonas sp. strain AAP5 which contains genes for both light-harvesting systems. We show that bacteriochlorophyll-based reaction centers are repressed by light and/or glucose. On the other hand, the rhodopsin gene was not expressed significantly under any of the experimental conditions. This may indicate that rhodopsin in Sphingomonas may have other functions not linked to bioenergetics.


Sign in / Sign up

Export Citation Format

Share Document