scholarly journals Stable Gastric Pentadecapeptide BPC 157 Therapy for Monocrotaline-Induced Pulmonary Hypertension in Rats Leads to Prevention and Reversal

Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 822
Author(s):  
Mario Udovicic ◽  
Marko Sever ◽  
Lovro Kavur ◽  
Kristina Loncaric ◽  
Ivan Barisic ◽  
...  

Background. Monocrotaline selectively injures the lung’s vascular endothelium and induces pulmonary arterial hypertension. The stable gastric pentadecapeptide BPC 157 acts as a prototype cytoprotective agent that maintains endothelium, and its application may be a novel therapy. Besides, BPC 157 prevents and reverses thrombosis formation, maintains platelet function, alleviates peripheral vascular occlusion disturbances, and has anti-arrhythmic and anti-inflammatory effects. Monocrotaline-induced pulmonary arterial hypertension in rats (wall thickness, total vessel area, heart frequency, QRS axis deviation, QT interval prolongation, increase in right ventricle systolic pressure and bodyweight loss) can be counteracted with early or delayed BPC 157 therapy. Methods and Results. After monocrotaline (80 mg/kg subcutaneously), BPC 157 (10 μg/kg or 10 ng/kg, days 1–14 or days 1–30 (early regimens), or days 14–30 (delayed regimen)) was given once daily intraperitoneally (last application 24 h before sacrifice) or continuously in drinking water until sacrifice (day 14 or 30). Without therapy, the outcome was the full monocrotaline syndrome, marked by right-side heart hypertrophy and massive thickening of the precapillary artery’s smooth muscle layer, clinical deterioration, and sometimes death due to pulmonary hypertension and right-heart failure during the 4th week after monocrotaline injection. With all BPC 157 regimens, monocrotaline-induced pulmonary arterial hypertension (including all disturbed parameters) was counteracted, and consistent beneficial effects were documented during the whole course of the disease. Pulmonary hypertension was not even developed (early regimens) as quickly as the advanced pulmonary hypertension was rapidly attenuated and then completely eliminated (delayed regimen). Conclusions. Thus, pentadecapeptide BPC 157 prevents and counteracts monocrotaline-induced pulmonary arterial hypertension and cor pulmonale in rats.

ANALES RANM ◽  
2021 ◽  
Vol 138 (138(02)) ◽  
pp. 137-142
Author(s):  
J.R. de Berrazueta Fernández

Pulmonary Arterial Hypertension is a central syndrome produced by a large number of cardiological, pulmonary, and systemic diseases that affect the lung bed. It is defined by the existence of a pulmonary artery systolic pressure greater than 30 or a mean pressure greater than 25 mmHg. This definition criterion has been maintained for more than 60 years. However, the current classification includes two concepts: a Pulmonary Arterial Hypertension (PAH) with two groups of disorders in which only pulmonary arterial resistance increases and five groups that are classified as Pulmonary Hypertension (PH): PH Secondary to Pulmonary Veno-occlusive Disease , HP secondary to diseases of the left side of the heart; HP Obliterative diseases and pulmonary hypoxemia; HP Pulmonary thrombus occlusive diseases, and a group of multifactorial HP. The difference is found in how the different diseases affect the pulmonary vascular bed, and how they alter the physiology or behavior of pulmonary resistance, which are the concepts that must be handled when talking about this syndrome and whose structural changes and management we will discuss in a later article.


2020 ◽  
Author(s):  
Bahram Ghasemzadeh ◽  
Bahador Azizi ◽  
Simin Azemati ◽  
Mostafa Bagherinasab

Anesthetized patient management for pediatric patients with pulmonary arterial hypertension (PAH) is a major challenge. The aim of this study was to evaluate the ability of dexmedetomidine to reduce pulmonary arterial hypertension in patients with pulmonary arterial hypertension undergoing cardiac surgery. Sixty-six patients with pulmonary arterial hypertension underwent the study. Patients were randomly divided into two groups: group D received a dexmedetomidine injection in a dose of 1 μg/kg in the first hour and then decreased to 0.5 μg/kg/hr, injection continued after surgery until extubation in the post-anesthetic care unit (PACU). Group C received normal saline 0.9% in a similar volume. Pulmonary artery systolic pressure (PASP) and systemic systolic blood pressure (SSBP) were recorded during and after the surgery in the postanesthetic care unit. Needing vasodilators, sedatives, extubation time, and the length of ICU stay were recorded for all patients. Patients in the dexmedetomidine group showed a significant reduction in Pulmonary artery systolic pressure and Pulmonary artery systolic pressure/systemic systolic blood pressure rates during surgery and during the first 24 hours in the post-anesthetic care unit (P<0.001). The dexmedetomidine group, in comparison with the control group, needed a significantly lower dose of a vasodilator (P<0.001) and a lower dose of sedation (P<0.001). It is concluded that the use of dexmedetomidine during the surgery in children with pulmonary hypertension reduces pulmonary artery systolic pressure during and after the surgery.


2016 ◽  
Vol 310 (11) ◽  
pp. L1088-L1097 ◽  
Author(s):  
C. M. Happé ◽  
M. A. de Raaf ◽  
N. Rol ◽  
I. Schalij ◽  
A. Vonk-Noordegraaf ◽  
...  

The SU5416 + hypoxia (SuHx) rat model is a commonly used model of severe pulmonary arterial hypertension. While it is known that exposure to hypoxia can be replaced by another type of hit (e.g., ovalbumin sensitization) it is unknown whether abnormal pulmonary blood flow (PBF), which has long been known to invoke pathological changes in the pulmonary vasculature, can replace the hypoxic exposure. Here we studied if a combination of SU5416 administration combined with pneumonectomy (PNx), to induce abnormal PBF in the contralateral lung, is sufficient to induce severe pulmonary arterial hypertension (PAH) in rats. Sprague Dawley rats were subjected to SuPNx protocol (SU5416 + combined with left pneumonectomy) or standard SuHx protocol, and comparisons between models were made at week 2 and 6 postinitiation. Both SuHx and SuPNx models displayed extensive obliterative vascular remodeling leading to an increased right ventricular systolic pressure at week 6. Similar inflammatory response in the lung vasculature of both models was observed alongside increased endothelial cell proliferation and apoptosis. This study describes the SuPNx model, which features severe PAH at 6 wk and could serve as an alternative to the SuHx model. Our study, together with previous studies on experimental models of pulmonary hypertension, shows that the typical histopathological findings of PAH, including obliterative lesions, inflammation, increased cell turnover, and ongoing apoptosis, represent a final common pathway of a disease that can evolve as a consequence of a variety of insults to the lung vasculature.


2016 ◽  
Vol 48 (4) ◽  
pp. 1127-1136 ◽  
Author(s):  
Chandran Nagaraj ◽  
Bi Tang ◽  
Bence M. Nagy ◽  
Rita Papp ◽  
Pritesh P. Jain ◽  
...  

Cardioprotective benefits of ω-3 fatty acids such as docosahexaenoic acid (DHA) are well established, but the regulatory effect of DHA on vascular tone and pressure in pulmonary hypertension is largely unknown.As DHA is a potent regulator of K+ channels, we hypothesised that DHA modulates the membrane potential of pulmonary artery smooth muscle cells (PASMCs) through K+ channels and thus exerts its effects on pulmonary vascular tone and pressure.We show that DHA caused dose-dependent activation of the calcium-activated K+ (KCa) current in primary human PASMCs and endothelium-dependent relaxation of pulmonary arteries. This vasodilation was significantly diminished in KCa–/– (Kcnma1–/–) mice. In vivo, acute DHA returned the right ventricular systolic pressure in the chronic hypoxia-induced pulmonary hypertension animal model to the level of normoxic animals. Interestingly, in idiopathic pulmonary arterial hypertension the KCa channels and their subunits were upregulated. DHA activated KCa channels in these human PASMCs and hyperpolarised the membrane potential of the idiopathic pulmonary arterial hypertension PASMCs to that of the PASMCs from healthy donors.Our findings indicate that DHA activates PASMC KCa channels leading to vasorelaxation in pulmonary hypertension. This effect might provide a molecular explanation for the previously undescribed role of DHA as an acute vasodilator in pulmonary hypertension.


2014 ◽  
Vol 13 (1) ◽  
pp. 21-26 ◽  
Author(s):  
Michael D. McGoon ◽  
Marc Humbert

Registries of pulmonary arterial hypertension (PAH) are important means by which to characterize the presentation and outcome of patients and to provide a basis for predicting the course of the disease. This article summarizes the published conclusions of the World Symposium of Pulmonary Hypertension task force that addressed registries and epidemiology of PAH.


2020 ◽  
Vol 4 (S1) ◽  
Author(s):  
Rosaria Barracano ◽  
Heba Nashat ◽  
Andrew Constantine ◽  
Konstantinos Dimopoulos

Abstract Background Eisenmenger syndrome is a multisystem disorder, characterised by a significant cardiac defect, severe pulmonary hypertension and long-standing cyanosis. Despite the availability of pulmonary hypertension therapies and improved supportive care in specialist centres, Eisenmenger patients are still faced with significant morbidity and mortality. Case presentation We describe the case of a 44-year-old woman with Eisenmenger syndrome secondary to a large secundum atrial septal defect. Her pulmonary vascular disease was treated with pulmonary vasodilators, but she experienced a progressive decline in exercise tolerance, increasing atrial arrhythmias, resulting in referral for transplantation. Her condition was complicated by significant recurrent haemoptysis in the context of extremely dilated pulmonary arteries and in-situ thrombosis, which prompted successful heart and lung transplantation. She made a slow recovery but remains well 3 years post-transplant. Conclusions Patients with Eisenmenger syndrome secondary to a pre-tricuspid lesion, such as an atrial septal defect have a natural history that differs to patients with post-tricuspid shunts; the disease tends to present later in life but is more aggressive, prompting early and aggressive medical intervention with pulmonary arterial hypertension therapies. This case illustrates that severe recurrent haemoptysis can be an indication for expediting transplantation in Eisenmenger syndrome patients.


Antioxidants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 779
Author(s):  
Daria S. Kostyunina ◽  
Paul McLoughlin

Pulmonary hypertension (PH) is a condition characterised by an abnormal elevation of pulmonary artery pressure caused by an increased pulmonary vascular resistance, frequently leading to right ventricular failure and reduced survival. Marked sexual dimorphism is observed in patients with pulmonary arterial hypertension, a form of pulmonary hypertension with a particularly severe clinical course. The incidence in females is 2–4 times greater than in males, although the disease is less severe in females. We review the contribution of the sex chromosomes to this sex dimorphism highlighting the impact of proteins, microRNAs and long non-coding RNAs encoded on the X and Y chromosomes. These genes are centrally involved in the cellular pathways that cause increased pulmonary vascular resistance including the production of reactive oxygen species, altered metabolism, apoptosis, inflammation, vasoconstriction and vascular remodelling. The interaction with genetic mutations on autosomal genes that cause heritable pulmonary arterial hypertension such as bone morphogenetic protein 2 (BMPR2) are examined. The mechanisms that can lead to differences in the expression of genes located on the X chromosomes between females and males are also reviewed. A better understanding of the mechanisms of sex dimorphism in this disease will contribute to the development of more effective therapies for both women and men.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Brooke Currie ◽  
Evan Davies ◽  
Amélie Beaudet ◽  
Larissa Stassek ◽  
Leah Kleinman

Abstract Background Chronic thromboembolic pulmonary hypertension (CTEPH) is a rare form of pulmonary hypertension caused by blood clots and scar tissue in the blood vessels of the lungs. Health-related quality of life is often significantly impaired in patients with CTEPH. However, a better understanding of how CTEPH symptoms affect patients’ lives is needed to optimally assess the impact of the disease and treatment. Objectives This qualitative study aimed to better understand the symptoms of CTEPH and how they affect patients’ lives, as well as to determine the appropriateness of the Pulmonary Arterial Hypertension – Symptoms and Impact (PAH-SYMPACT™) questionnaire for use in this patient population. Methods Adults diagnosed with CTEPH, recruited from two clinical sites in the US, participated in one-to-one qualitative telephone interviews. They described their experience of CTEPH symptoms and the impact these symptoms have on their lives. They also provided feedback on the comprehensibility and relevance of the PAH-SYMPACT™‘s instructions, items, and response options. Results Participants (N = 12) had a mean age of 62.5 years. Two thirds were female and most (83%) had undergone pulmonary endarterectomy and/or balloon pulmonary angioplasty. The most frequently endorsed symptoms were shortness of breath (endorsed by all 12 participants), fatigue (11 participants), and lightheadedness (10 participants). All participants identified shortness of breath as an “extremely important” symptom, and seven participants rated fatigue as “extremely important.” The most frequent impacts of CTEPH were on ability to walk quickly (endorsed by all 12 participants), ability to walk up inclines or stairs (11 participants), and ability to carry things (11 participants). The PAH-SYMPACT™ items were relevant to most participants and reflected their experience of CTEPH. All participants indicated that no important CTEPH symptoms were missing from the PAH-SYMPACT™. Overall, the instructions, items, and response options of the PAH-SYMPACT™ were clear and easy to understand. Conclusions The symptoms and impacts experienced by patients with CTEPH align with items included in the PAH-SYMPACT™. The PAH-SYMPACT™ appears to be fit for purpose for assessing disease status in patients with CTEPH.


Sign in / Sign up

Export Citation Format

Share Document