scholarly journals Stimulation of Different Sectors of the Human Dorsal Premotor Cortex Induces a Shift from Reactive to Predictive Action Strategies and Changes in Motor Inhibition: A Dense Transcranial Magnetic Stimulation (TMS) Mapping Study

2021 ◽  
Vol 11 (5) ◽  
pp. 534
Author(s):  
Luigi Cattaneo ◽  
Sara Parmigiani

Delayed motor tasks require timely interaction between immobility and action. The neural substrates of these processes probably reside in the premotor and motor circuits; however, fine-grained anatomical/functional information is still lacking. Participants performed a delayed simple reaction task, structured as a ready-set-go sequence, with a fixed, predictable, SET-period. Responses were given with lip movements. During the SET-period, we performed a systematic dense-mapping of the bilateral dorsal premotor region (dPM) by means of single transcranial magnetic stimulation (TMS) pulses on an 18-spot mapping grid, interleaved with sham TMS which served as a baseline. Reaction times (RTs) in TMS trials over each grid spot were compared to RTs in sham trials to build a statistical parametric z-map. The results reveal a rostro-caudal functional gradient in the dPM. TMS of the rostral dPM induced a shift from reactive towards predictive response strategies. TMS of the caudal dPM interfered with the SET-period duration. By means of dense TMS mapping, we have drawn a putative functional map of the role of the dPM during the SET-period. A higher-order rostral component is involved in setting action strategies and a caudal, lower-order, part is probably involved in the inhibitory control of motor output.

2009 ◽  
Vol 21 (11) ◽  
pp. 2129-2138 ◽  
Author(s):  
Elena Salillas ◽  
Demis Basso ◽  
Maurizia Baldi ◽  
Carlo Semenza ◽  
Tomaso Vecchi

It has often been proposed that there is a close link between representation of number and space. In the present work, single-pulse transcranial magnetic stimulation (TMS) was applied to the ventral intraparietal sulcus (VIPS) to determine effects on performance in motion detection and number comparison tasks. Participants' reaction times and thresholds for perception of laterally presented coherent motion in random dot kinematograms increased significantly when the contralateral VIPS was stimulated in contrast to the interhemispheric sulcus (Experiment 1) and to the ipsilateral VIPS (Experiment 2). In number comparison tasks, participants compared the magnitude of the laterally presented numbers 1–9 with the number 5. Again, reaction times significantly increased when TMS was applied to the contralateral VIPS in contrast to control sites. The finding that VIPS-directed TMS results in impaired efficiency in both motion perception and number comparison suggests that these processes share a common neural substrate.


NeuroImage ◽  
2012 ◽  
Vol 62 (1) ◽  
pp. 500-509 ◽  
Author(s):  
Sergiu Groppa ◽  
Nicole Werner-Petroll ◽  
Alexander Münchau ◽  
Günther Deuschl ◽  
Matthew F.S. Ruschworth ◽  
...  

2001 ◽  
Vol 85 (6) ◽  
pp. 2624-2629 ◽  
Author(s):  
A. P. Strafella ◽  
T. Paus

Positron emission tomography (PET) was used to assess changes in regional cerebral blood flow (CBF) induced by paired-pulse transcranial magnetic stimulation (TMS) of primary motor cortex (M1). The study was performed in eight normal volunteers using two Magstim-200 stimulators linked with a Bistim module. A circular TMS coil was held in the scanner by a mechanical arm and located over the left M1. Surface electrodes were used to record motor evoked potentials (MEPs) from the contralateral first dorsal interosseous muscle (FDI). Cortical excitability was evaluated in the relaxed FDI using a paired conditioning-test stimulus paradigm with two interstimulus intervals (ISIs): 3 and 12 ms. The subjects were scanned three times during each of the following four conditions: 1) baseline with no TMS (BASE); 2) single-pulse TMS (TMSsing); 3) 3-ms paired-pulse TMS (TMS3); and 4) 12-ms paired-pulse TMS (TMS12). CBF and peak-to-peak MEP amplitudes were measured over each 60-s scanning period. To assess TMS-induced changes in CBF, a t-statistic map was generated by first subtracting the single-pulse TMS condition from the 3- and 12-ms paired-pulse TMS conditions and then correlating the CBF differences, respectively, with the amount of suppression and facilitation of the EMG responses. A significant positive correlation was observed between the CBF difference (TMS3-TMSsing) and the amount of suppression of EMG response, as well as between the CBF difference (TMS12-TMSsing) and the amount of facilitation of EMG response. This positive correlation was observed in the left M1, left lateral premotor cortex, and right M1 in the case of 3-ms paired-pulse TMS, but only in the left M1 in the case of 12-ms paired-pulse TMS. The above pattern of CBF response to paired-pulse TMS supports the possibility that suppression and facilitation of the EMG response are mediated by different populations of cortical interneurons.


2015 ◽  
Vol 8 (5) ◽  
pp. 953-956 ◽  
Author(s):  
Sebo Uithol ◽  
Michele Franca ◽  
Katrin Heimann ◽  
Daniele Marzoli ◽  
Paolo Capotosto ◽  
...  

2017 ◽  
Vol 10 (2) ◽  
pp. 533-534
Author(s):  
A. Salatino ◽  
A. Piedimonte ◽  
P. Sarasso ◽  
F. Garbarini ◽  
R. Ricci ◽  
...  

2016 ◽  
Vol 127 (2) ◽  
pp. 1475-1480 ◽  
Author(s):  
Jessica Shields ◽  
Jung E. Park ◽  
Prachaya Srivanitchapoom ◽  
Rainer Paine ◽  
Nivethida Thirugnanasambandam ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document