scholarly journals The Validity of Functional Near-Infrared Spectroscopy Recordings of Visuospatial Working Memory Processes in Humans

2018 ◽  
Vol 8 (4) ◽  
pp. 62 ◽  
Author(s):  
Joëlle Witmer ◽  
Eva Aeschlimann ◽  
Andreas Metz ◽  
Stefan Troche ◽  
Thomas Rammsayer
2018 ◽  
Vol 8 (8) ◽  
pp. 152 ◽  
Author(s):  
Joëlle Witmer ◽  
Eva Aeschlimann ◽  
Andreas Metz ◽  
Stefan Troche ◽  
Thomas Rammsayer

In a previous study in young adults, we showed that hemodynamic changes as measured by functional near-infrared spectroscopy (fNIRS) were sensitive for identifying visuospatial working memory (WM)-related functional brain activation in the prefrontal cortex. This functional activation, however, could not be verified for participants with far-above-average mental ability, suggesting different cognitive processes adopted by this group. The present study was designed to confirm these findings in 11- to 13-year-old children by applying the same study design, experimental task, fNIRS setup, and statistical approach. We successfully replicated the earlier findings on sensitivity of fNIRS with regard to visuospatial WM-specific task demands in our children sample. Likewise, mental-ability-induced differences in functional activation were even more pronounced in the children compared with in the young adults. By testing a children sample, we were able to not only replicate our previous findings based on adult participants but also generalize the validity of these findings to children. This latter aspect seems to be of particular significance considering the relatively large number of fNIRS studies on WM performance in children.


2009 ◽  
Vol 02 (04) ◽  
pp. 423-430 ◽  
Author(s):  
TING LI ◽  
LI LI ◽  
QINGMING LUO ◽  
HUI GONG

Working memory is one of the most important functions in our brain, which has been widely studied with unreal-life measured technologies. A functional near-infrared spectroscopy (fNIRS) instrument with a portable and low-cost design is developed, which is capable of providing hemodynamic measurement associated with brain function in real-life situations. Using this instrument, we performed working memory studies involved in Chinese words encoding, verbal, and spatial stem recognition, which are mainly studied with other technologies. Our results show that fNIRS can well assess working memory activities, in comparison with the reported results mainly using other methodologies. Furthermore, we find that hemodynamic change in the prefrontal cortex during all working memory tasks is highly associated with subjects' behavioral data. fNIRS is shown to be a promising alternative to the current methodologies for studying or assessing functional brain activities in natural condition.


Sign in / Sign up

Export Citation Format

Share Document