brain level
Recently Published Documents


TOTAL DOCUMENTS

43
(FIVE YEARS 19)

H-INDEX

8
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Yingliang Dai ◽  
Zhou Zhou ◽  
Feng Chen ◽  
Li Zhang ◽  
Jun Ke ◽  
...  

Abstract BackgroundResearch has been looking into neural pathophysiology of post-traumatic stress disorder (PTSD) and dynamic functioning connectivity (dFC) applying resting state functional magnetic resonance imaging (rs-fMRI). Previous studies showed that PTSD related impairments are associated with alterations distributed across different brain regions and disorganized functional connectivity, especially in Default Mode Network and the cerebellar area. In this study, we specifically looked into dFC on a whole brain level, and we focused on critical regions such as DMN and cerebellum. MethodsTo explore the characteristics of dFC among patients with PTSD, we collected rs-fMRI data from 27 PTSD patients and 30 healthy controls. The study also added a control group of 33 trauma-exposed individuals to further look into trauma impact. Utilizing group spatial independent component analysis (ICA), the dynamic properties on whole brain level were detected with sliding time window approach, and k-means clustering. ResultsTwo reoccurring FC “States” were identified, with connections being more concentrated on a within-network level in one state and more strongly inter-connected in the other state. Abnormalities in dFC were found within DMN, between DMN and cerebellum, and between DMN and visual network. ConclusionsThe findings were in accordance with the study hypothesis that PTSD patients demonstrated deficits in emotional modulation and dysfunctional self-referential thoughts, and the deficits could be indicated in dFC alterations. Abnormalities in dFC among PTSD patients could serve as appropriate indicators of PTSD symptoms including depression and anxiety, hypervigilance, as well as impaired cognitive functioning and self-referential information processing.


2021 ◽  
pp. 1-33
Author(s):  
Joe Bathelt ◽  
Hilde M. Geurts ◽  
Denny Borsboom

Abstract Network approaches that investigate the interaction between symptoms or behaviours have opened new ways of understanding psychological phenomena in health and disorder. In parallel, network approaches that characterise the interaction between brain regions have become the dominant approach in neuroimaging research. Combining these parallel approaches would enable new insights into the interaction between behaviours and their brain-level correlates. In this paper, we introduce a methodology for combining network psychometrics and network neuroscience. This approach utilises the information from the psychometric network to obtain neural correlates for each node in the psychometric network (network-based regression). We illustrate the approach by highlighting the interaction between autistic traits and their resting-state functional associations. To this end, we utilise data from 172 male autistic participants (10–21 years) from the autism brain data exchange (ABIDE, ABIDE-II). Our results indicate that the network-based regression approach can uncover both unique and shared neural correlates of behavioural measures. In addition, the methodology enables us to isolate mechanisms at the brain-level that are unique to particular behavioural variables. For instance, our example analysis indicates that the overlap between communication and social difficulties is not reflected in the overlap between their functional correlates.


Author(s):  
Coralie Mignot ◽  
Anica Schunke ◽  
Charlotte Sinding ◽  
Thomas Hummel

Abstract Purpose Olfactory adaptation is a peripheral (at the epithelium level) or a central (at the brain level) mechanism resulting from repeated or prolonged odorous exposure that can induce a perceptual decrease. The aim of this study was to assess whether a peripheral adaptation occurs when an odor is repeated ten times. Moreover, the specificity of the peripheral adaptation to the nature of the odorant was investigated. Methods Four odorants (eugenol, manzanate, ISO E Super and phenylethanol) were presented using precisely controlled air-dilution olfactometry. They differed in terms of their physicochemical properties. Electrophysiological recordings were made at the level of the olfactory mucosa, the so-called electro-olfactogram (EOG). Thirty-five right-handed participants were recruited. Results Sixty-nine percent of the participants presented at least one EOG, whatever the odor condition. The EOG amplitude did not significantly decrease over 10 repeated exposures to any odorant. The intensity ratings tended to decrease over stimulations for manzanate, PEA, and eugenol. No correlation was found between the mean EOG amplitudes and the mean intensity ratings. However, the presence of EOG amplitude decreases over stimulations for few subjects suggests that peripheral adaptation might exist. Conclusion Overall, our results did not establish a clear peripheral adaptation measured with EOG but indicate the eventuality of such an effect.


2021 ◽  
Vol 12 ◽  
Author(s):  
Umair J. Chaudhary ◽  
Maria Centeno ◽  
David W. Carmichael ◽  
Beate Diehl ◽  
Matthew C. Walker ◽  
...  

Background: Potentially curative epilepsy surgery can be offered if a single, discrete epileptogenic zone (EZ) can be identified. For individuals in whom there is no clear concordance between clinical localization, scalp EEG, and imaging data, intracranial EEG (icEEG) may be needed to confirm a predefined hypothesis regarding irritative zone (IZ), seizure onset zone (SOZ), and EZ prior to surgery. However, icEEG has limited spatial sampling and may fail to reveal the full extent of epileptogenic network if predefined hypothesis is not correct. Simultaneous icEEG-fMRI has been safely acquired in humans and allows exploration of neuronal activity at the whole-brain level related to interictal epileptiform discharges (IED) captured intracranially.Methods: We report icEEG-fMRI in eight patients with refractory focal epilepsy who had resective surgery and good postsurgical outcome. Surgical resection volume in seizure-free patients post-surgically reflects confirmed identification of the EZ. IEDs on icEEG were classified according to their topographic distribution and localization (Focal, Regional, Widespread, and Non-contiguous). We also divided IEDs by their location within the surgical resection volume [primary IZ (IZ1) IED] or outside [secondary IZ (IZ2) IED]. The distribution of fMRI blood oxygen level-dependent (BOLD) changes associated with individual IED classes were assessed over the whole brain using a general linear model. The concordance of resulting BOLD map was evaluated by comparing localization of BOLD clusters with surgical resection volume. Additionally, we compared the concordance of BOLD maps and presence of BOLD clusters in remote brain areas: precuneus, cuneus, cingulate, medial frontal, and thalamus for different IED classes.Results: A total of 38 different topographic IED classes were identified across the 8 patients: Focal (22) and non-focal (16, Regional = 9, Widespread = 2, Non-contiguous = 5). Twenty-nine IEDs originated from IZ1 and 9 from IZ2. All IED classes were associated with BOLD changes. BOLD maps were concordant with the surgical resection volume for 27/38 (71%) IED classes, showing statistical global maximum BOLD cluster or another cluster in the surgical resection volume. The concordance of BOLD maps with surgical resection volume was greater (p < 0.05) for non-focal (87.5%, 14/16) as compared to Focal (59%, 13/22) IED classes. Additionally, BOLD clusters in remote cortical and deep brain areas were present in 84% (32/38) of BOLD maps, more commonly (15/16; 93%) for non-focal IED-related BOLD maps.Conclusions: Simultaneous icEEG-fMRI can reveal BOLD changes at the whole-brain level for a wide range of IEDs on icEEG. BOLD clusters within surgical resection volume and remote brain areas were more commonly seen for non-focal IED classes, suggesting that a wider hemodynamic network is at play.


2021 ◽  
Vol 15 ◽  
Author(s):  
Edmund T. Rolls

A neuroscience-based approach has recently been proposed for the relation between the mind and the brain. The proposal is that events at the sub-neuronal, neuronal, and neuronal network levels take place simultaneously to perform a computation that can be described at a high level as a mental state, with content about the world. It is argued that as the processes at the different levels of explanation take place at the same time, they are linked by a non-causal supervenient relationship: causality can best be described in brains as operating within but not between levels. This mind-brain theory allows mental events to be different in kind from the mechanistic events that underlie them; but does not lead one to argue that mental events cause brain events, or vice versa: they are different levels of explanation of the operation of the computational system. Here, some implications are developed. It is proposed that causality, at least as it applies to the brain, should satisfy three conditions. First, interventionist tests for causality must be satisfied. Second, the causally related events should be at the same level of explanation. Third, a temporal order condition must be satisfied, with a suitable time scale in the order of 10 ms (to exclude application to quantum physics; and a cause cannot follow an effect). Next, although it may be useful for different purposes to describe causality involving the mind and brain at the mental level, or at the brain level, it is argued that the brain level may sometimes be more accurate, for sometimes causal accounts at the mental level may arise from confabulation by the mentalee, whereas understanding exactly what computations have occurred in the brain that result in a choice or action will provide the correct causal account for why a choice or action was made. Next, it is argued that possible cases of “downward causation” can be accounted for by a within-levels-of-explanation account of causality. This computational neuroscience approach provides an opportunity to proceed beyond Cartesian dualism and physical reductionism in considering the relations between the mind and the brain.


2021 ◽  
Vol 24 (1) ◽  
pp. 224-241
Author(s):  
Rosina Caterina Filimon

Abstract A new scientific discipline, neuromusicology, connects the scientific research of music and that of the nervous system, in particular of the brain. It studies the effects of music on the brain; the present paper relates to this particular field. Initially, the right hemisphere was associated with the process of music reception and it was considered that the activation of the left hemisphere was the responsibility of language. Neuroimaging, however, demonstrates that the elements of musical language activate various brain areas in both hemispheres, simultaneously generating the perception of music and emotions. Research in the field of psychoacoustics has revealed that listening to music triggers the production of neurotransmitters in the body that relieve pain, reduce stress and anxiety. Another effect determined by listening and studying music is the structural changes that occur at brain level due to brain neuroplasticity. Pathological changes at brain level have consequences in perception and influence all human activities. Disease alters the artistic creativity of people suffering from various pathologies, biographies of many artists proving that neurological diseases influenced their artistic activity. Decoding the functioning of the brain in the presence of music and its effects on brain activity make it possible to use music therapy as a complementary method to medical treatment. The harmful effects of the current Covid-19 pandemic on the brain are obvious and are already reported in completed or ongoing research studies. The adoption of music as a therapeutic tool in the current global epidemiological crisis highlights its undeniable qualities in multiple pathologies and updates its mental and somatic benefits, complementary to medicine. All this provides an important drive in the reassessment and reconfiguration of the need to amplify the interference strategies between the field of music and that of medicine, implicitly that of neurology.


2021 ◽  
Vol 11 (3) ◽  
pp. 377
Author(s):  
Cheng Chen ◽  
Kai Yuan ◽  
Winnie Chiu-wing Chu ◽  
Raymond Kai-yu Tong

Transcranial alternating current stimulation (tACS) has emerged as a promising technique to non-invasively modulate the endogenous oscillations in the human brain. Despite its clinical potential to be applied in routine rehabilitation therapies, the underlying modulation mechanism has not been thoroughly understood, especially for patients with neurological disorders, including stroke. In this study, we aimed to investigate the frequency-specific stimulation effect of tACS in chronic stroke. Thirteen chronic stroke patients underwent tACS intervention, while resting-state functional magnetic resonance imaging (fMRI) data were collected under various frequencies (sham, 10 Hz and 20 Hz). The graph theoretical analysis indicated that 20 Hz tACS might facilitate local segregation in motor-related regions and global integration at the whole-brain level. However, 10 Hz was only observed to increase the segregation from whole-brain level. Additionally, it is also observed that, for the network in motor-related regions, the nodal clustering characteristic was decreased after 10 Hz tACS, but increased after 20 Hz tACS. Taken together, our results suggested that tACS in various frequencies might induce heterogeneous modulation effects in lesioned brains. Specifically, 20 Hz tACS might induce more modulation effects, especially in motor-related regions, and they have the potential to be applied in rehabilitation therapies to facilitate neuromodulation. Our findings might shed light on the mechanism of neural responses to tACS and facilitate effectively designing stimulation protocols with tACS in stroke in the future.


2021 ◽  
Author(s):  
Ge Zhang ◽  
Yan Cui ◽  
Yangsong Zhang ◽  
Hefei Cao ◽  
Guanyu Zhou ◽  
...  

AbstractPeriodic visual stimulation can induce stable steady-state visual evoked potentials (SSVEPs) distributed in multiple brain regions and has potential applications in both neural engineering and cognitive neuroscience. However, the underlying dynamic mechanisms of SSVEPs at the whole-brain level are still not completely understood. Here, we addressed this issue by simulating the rich dynamics of SSVEPs with a large-scale brain model designed with constraints of neuroimaging data acquired from the human brain. By eliciting activity of the occipital areas using an external periodic stimulus, our model was capable of replicating both the spatial distributions and response features of SSVEPs that were observed in experiments. In particular, we confirmed that alpha-band (8-12 Hz) stimulation could evoke stronger SSVEP responses; this frequency sensitivity was due to nonlinear resonance and could be modulated by endogenous factors in the brain. Interestingly, the stimulus-evoked brain networks also exhibited significant superiority in topological properties near this frequency-sensitivity range, and stronger SSVEP responses were demonstrated to be supported by more efficient functional connectivity at the neural activity level. These findings not only provide insights into the mechanistic understanding of SSVEPs at the whole-brain level but also indicate a bright future for large-scale brain modeling in characterizing the complicated dynamics and functions of the brain.


2021 ◽  
pp. 103-124
Author(s):  
Iain McGilchrist

Discusses the role that attention plays in constituting the world, rather than reducing phenomena to the brain level. Discusses the different kinds of attention delineated by the divided hemispheres of the brain. On the one hand the left hemisphere specialised in grasping and manipulating the world, whereas the right hemisphere specialises in relat-ing to and understanding the world. Discusses how reliance on one or the other kind of attention has cultural, psychological and social implications.


Sign in / Sign up

Export Citation Format

Share Document