scholarly journals Pharmacokinetic Analysis of Dynamic Contrast-Enhanced Magnetic Resonance Imaging at 7T for Breast Cancer Diagnosis and Characterization

Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3763
Author(s):  
R. Elena Ochoa-Albiztegui ◽  
Varadan Sevilimedu ◽  
Joao V. Horvat ◽  
Sunitha B. Thakur ◽  
Thomas H. Helbich ◽  
...  

The purpose of this study was to investigate whether ultra-high-field dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) of the breast at 7T using quantitative pharmacokinetic (PK) analysis can differentiate between benign and malignant breast tumors for improved breast cancer diagnosis and to predict molecular subtypes, histologic grade, and proliferation rate in breast cancer. In this prospective study, 37 patients with 43 lesions suspicious on mammography or ultrasound underwent bilateral DCE-MRI of the breast at 7T. PK parameters (KTrans, kep, Ve) were evaluated with two region of interest (ROI) approaches (2D whole-tumor ROI or 2D 10 mm standardized ROI) manually drawn by two readers (senior reader, R1, and R2) independently. Histopathology served as the reference standard. PK parameters differentiated benign and malignant lesions (n = 16, 27, respectively) with good accuracy (AUCs = 0.655–0.762). The addition of quantitative PK analysis to subjective BI-RADS classification improved breast cancer detection from 88.4% to 97.7% for R1 and 86.04% to 97.67% for R2. Different ROI approaches did not influence diagnostic accuracy for both readers. Except for KTrans for whole-tumor ROI for R2, none of the PK parameters were valuable to predict molecular subtypes, histologic grade, or proliferation rate in breast cancer. In conclusion, PK-enhanced BI-RADS is promising for the noninvasive differentiation of benign and malignant breast tumors.

Author(s):  
A. Niukkanen ◽  
H. Okuma ◽  
M. Sudah ◽  
P. Auvinen ◽  
A. Mannermaa ◽  
...  

AbstractWe aimed to assess the feasibility of three-dimensional (3D) segmentation and to investigate whether semi-quantitative dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) parameters are associated with traditional prognostic factors for breast cancer. In addition, we evaluated whether both intra-tumoural and peri-tumoural DCE parameters can differentiate the breast cancers that are more aggressive from those that are less aggressive. Consecutive patients with newly diagnosed invasive breast cancer and structural breast MRI (3.0 T) were included after informed consent. Fifty-six patients (mean age, 57 years) with mass lesions of > 7 mm in diameter were included. A semi-automatic image post-processing algorithm was developed to measure 3D pharmacokinetic information from the DCE-MRI images. The kinetic parameters were extracted from time-signal curves, and the absolute tissue contrast agent concentrations were calculated with a reference tissue model. Markedly, higher intra-tumoural and peri-tumoural tissue concentrations of contrast agent were found in high-grade tumours (n = 44) compared to low-grade tumours (n = 12) at every time point (P = 0.006–0.040), providing positive predictive values of 90.6–92.6% in the classification of high-grade tumours. The intra-tumoural and peri-tumoural signal enhancement ratios correlated with tumour grade, size, and Ki67 activity. The intra-observer reproducibility was excellent. We developed a model to measure the 3D intensity data of breast cancers. Low- and high-grade tumours differed in their intra-tumoural and peri-tumoural enhancement characteristics. We anticipate that pharmacokinetic parameters will be increasingly used as imaging biomarkers to model and predict tumour behavior, prognoses, and responses to treatment.


2016 ◽  
Vol 18 (7) ◽  
pp. 1-10
Author(s):  
Asma Elamin ◽  
Ahmed Abukonna ◽  
Bushra Elmalik ◽  
Mona Ali ◽  
Mohamed Yousef ◽  
...  

2018 ◽  
Vol 22 (2) ◽  
Author(s):  
Dibuseng P. Ramaema ◽  
Richard J. Hift

Background: The use of multi-parametric magnetic resonance imaging (MRI) in the evaluation of breast tuberculosis (BTB).Objectives: To evaluate the value of diffusion-weighted imaging (DWI), T2-weighted (T2W) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in differentiating breast cancer (BCA) from BTB.Method: We retrospectively studied images of 17 patients with BCA who had undergone preoperative MRI and 6 patients with pathologically proven BTB who underwent DCE-MRI during January 2014 to January 2015.Results: All patients were female, with the age range of BTB patients being 23–43 years and the BCA patients being 31–74 years. Breast cancer patients had a statistically significant lower mean apparent diffusion coefficient (ADC) value (1072.10 +/- 365.14), compared to the BTB group (1690.77 +/- 624.05, p = 0.006). The mean T2-weighted signal intensity (T2SI) was lower for the BCA group (521.56 +/- 233.73) than the BTB group (787.74 +/- 196.04, p = 0.020). An ADC mean cut-off value of 1558.79 yielded 66% sensitivity and 94% specificity, whilst the T2SI cut-off value of 790.20 yielded 83% sensitivity and 83% specificity for differentiating between BTB and BCA. The homogeneous internal enhancement for focal mass was seen in BCA patients only.Conclusion: Multi-parametric MRI incorporating the DWI, T2W and DCE-MRI may be a useful tool to differentiate BCA from BTB.


Sign in / Sign up

Export Citation Format

Share Document